Results 11 - 20
of
33,192
Markov Logic Networks
- MACHINE LEARNING
, 2006
"... We propose a simple approach to combining first-order logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a first-order knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects in the ..."
Abstract
-
Cited by 816 (39 self)
- Add to MetaCart
We propose a simple approach to combining first-order logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a first-order knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects
The "Independent Components" of Natural Scenes are Edge Filters
, 1997
"... It has previously been suggested that neurons with line and edge selectivities found in primary visual cortex of cats and monkeys form a sparse, distributed representation of natural scenes, and it has been reasoned that such responses should emerge from an unsupervised learning algorithm that attem ..."
Abstract
-
Cited by 617 (29 self)
- Add to MetaCart
that attempts to find a factorial code of independent visual features. We show here that a new unsupervised learning algorithm based on information maximization, a nonlinear "infomax" network, when applied to an ensemble of natural scenes produces sets of visual filters that are localized and oriented
Bayesian Network Classifiers
, 1997
"... Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with state-of-the-art classifiers such as C4.5. This fact raises the question of whether a classifier with less restr ..."
Abstract
-
Cited by 796 (20 self)
- Add to MetaCart
Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with state-of-the-art classifiers such as C4.5. This fact raises the question of whether a classifier with less
Network information flow
- IEEE TRANS. INFORM. THEORY
, 2000
"... We introduce a new class of problems called network information flow which is inspired by computer network applications. Consider a point-to-point communication network on which a number of information sources are to be mulitcast to certain sets of destinations. We assume that the information source ..."
Abstract
-
Cited by 1967 (24 self)
- Add to MetaCart
We introduce a new class of problems called network information flow which is inspired by computer network applications. Consider a point-to-point communication network on which a number of information sources are to be mulitcast to certain sets of destinations. We assume that the information
Mining the Network Value of Customers
- In Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining
, 2002
"... One of the major applications of data mining is in helping companies determine which potential customers to market to. If the expected pro t from a customer is greater than the cost of marketing to her, the marketing action for that customer is executed. So far, work in this area has considered only ..."
Abstract
-
Cited by 568 (11 self)
- Add to MetaCart
as a set of independent entities, we view it as a social network and model it as a Markov random eld. We show the advantages of this approach using a social network mined from a collaborative ltering database. Marketing that exploits the network value of customers|also known as viral marketing
Practical network support for IP traceback
, 2000
"... This paper describes a technique for tracing anonymous packet flooding attacks in the Internet back towards their source. This work is motivated by the increased frequency and sophistication of denial-of-service attacks and by the difficulty in tracing packets with incorrect, or “spoofed”, source ad ..."
Abstract
-
Cited by 678 (13 self)
- Add to MetaCart
addresses. In this paper we describe a general purpose traceback mechanism based on probabilistic packet marking in the network. Our approach allows a victim to identify the network path(s) traversed by attack traffic without requiring interactive operational support from Internet Service Providers (ISPs
Adaptive clustering for mobile wireless networks
- IEEE Journal on Selected Areas in Communications
, 1997
"... This paper describes a self-organizing, multihop, mobile radio network, which relies on a code division access scheme for multimedia support. In the proposed network architecture, nodes are organized into nonoverlapping clusters. The clusters are independently controlled and are dynamically reconfig ..."
Abstract
-
Cited by 561 (11 self)
- Add to MetaCart
This paper describes a self-organizing, multihop, mobile radio network, which relies on a code division access scheme for multimedia support. In the proposed network architecture, nodes are organized into nonoverlapping clusters. The clusters are independently controlled and are dynamically
Architectural Styles and the Design of Network-based Software Architectures
, 2000
"...
The World Wide Web has succeeded in large part because its software architecture has been designed to meet the needs of an Internet-scale distributed hypermedia system. The Web has been iteratively developed over the past ten years through a series of modifications to the standards that define its ..."
Abstract
-
Cited by 1119 (1 self)
- Add to MetaCart
a system, how components identify and communicate with each other, how information is communicated, how elements of a system can evolve independently, and how all of the above can be described using formal and informal notations. My work is motivated by the desire to understand and evaluate
Using Bayesian networks to analyze expression data
- Journal of Computational Biology
, 2000
"... DNA hybridization arrays simultaneously measure the expression level for thousands of genes. These measurements provide a “snapshot ” of transcription levels within the cell. A major challenge in computational biology is to uncover, from such measurements, gene/protein interactions and key biologica ..."
Abstract
-
Cited by 1088 (17 self)
- Add to MetaCart
biological features of cellular systems. In this paper, we propose a new framework for discovering interactions between genes based on multiple expression measurements. This framework builds on the use of Bayesian networks for representing statistical dependencies. A Bayesian network is a graph-based model
A Neural Probabilistic Language Model
- JOURNAL OF MACHINE LEARNING RESEARCH
, 2003
"... A goal of statistical language modeling is to learn the joint probability function of sequences of words in a language. This is intrinsically difficult because of the curse of dimensionality: a word sequence on which the model will be tested is likely to be different from all the word sequences seen ..."
Abstract
-
Cited by 447 (19 self)
- Add to MetaCart
is itself a significant challenge. We report on experiments using neural networks for the probability function, showing on two text corpora that the proposed approach significantly improves on state-of-the-art n-gram models, and that the proposed approach allows to take advantage of longer contexts.
Results 11 - 20
of
33,192