Results 1  10
of
245,366
Reconstruction and Representation of 3D Objects with Radial Basis Functions
 Computer Graphics (SIGGRAPH ’01 Conf. Proc.), pages 67–76. ACM SIGGRAPH
, 2001
"... We use polyharmonic Radial Basis Functions (RBFs) to reconstruct smooth, manifold surfaces from pointcloud data and to repair incomplete meshes. An object's surface is defined implicitly as the zero set of an RBF fitted to the given surface data. Fast methods for fitting and evaluating RBFs al ..."
Abstract

Cited by 505 (1 self)
 Add to MetaCart
We use polyharmonic Radial Basis Functions (RBFs) to reconstruct smooth, manifold surfaces from pointcloud data and to repair incomplete meshes. An object's surface is defined implicitly as the zero set of an RBF fitted to the given surface data. Fast methods for fitting and evaluating RBFs
A comparison of bayesian methods for haplotype reconstruction from population genotype data.
 Am J Hum Genet
, 2003
"... In this report, we compare and contrast three previously published Bayesian methods for inferring haplotypes from genotype data in a population sample. We review the methods, emphasizing the differences between them in terms of both the models ("priors") they use and the computational str ..."
Abstract

Cited by 557 (7 self)
 Add to MetaCart
In this report, we compare and contrast three previously published Bayesian methods for inferring haplotypes from genotype data in a population sample. We review the methods, emphasizing the differences between them in terms of both the models ("priors") they use and the computational
Photorealistic Scene Reconstruction by Voxel Coloring
, 1997
"... A novel scene reconstruction technique is presented, different from previous approaches in its ability to cope with large changes in visibility and its modeling of intrinsic scene color and texture information. The method avoids image correspondence problems by working in a discretized scene space w ..."
Abstract

Cited by 467 (21 self)
 Add to MetaCart
A novel scene reconstruction technique is presented, different from previous approaches in its ability to cope with large changes in visibility and its modeling of intrinsic scene color and texture information. The method avoids image correspondence problems by working in a discretized scene space
Adapting to unknown smoothness via wavelet shrinkage
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 1995
"... We attempt to recover a function of unknown smoothness from noisy, sampled data. We introduce a procedure, SureShrink, which suppresses noise by thresholding the empirical wavelet coefficients. The thresholding is adaptive: a threshold level is assigned to each dyadic resolution level by the princip ..."
Abstract

Cited by 1006 (18 self)
 Add to MetaCart
by the principle of minimizing the Stein Unbiased Estimate of Risk (Sure) for threshold estimates. The computational effort of the overall procedure is order N log(N) as a function of the sample size N. SureShrink is smoothnessadaptive: if the unknown function contains jumps, the reconstruction (essentially) does
What energy functions can be minimized via graph cuts?
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2004
"... In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are co ..."
Abstract

Cited by 1047 (23 self)
 Add to MetaCart
many previous constructions and is easily applicable to vision problems that involve large numbers of labels, such as stereo, motion, image restoration, and scene reconstruction. We give a precise characterization of what energy functions can be minimized using graph cuts, among the energy functions
Poisson Surface Reconstruction
, 2006
"... We show that surface reconstruction from oriented points can be cast as a spatial Poisson problem. This Poisson formulation considers all the points at once, without resorting to heuristic spatial partitioning or blending, and is therefore highly resilient to data noise. Unlike radial basis function ..."
Abstract

Cited by 369 (5 self)
 Add to MetaCart
of the reconstructed model. Experimenting with publicly available scan data, we demonstrate reconstruction of surfaces with greater detail than previously achievable.
Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms
 IEEE Transactions on Image Processing
, 1993
"... Morphological reconstruction is part of a set of image operators often referred to as geodesic. In the binary case, reconstruction simply extracts the connected components of a binary image I (the mask) which are \marked " by a (binary) image J contained in I. This transformation can be ext ..."
Abstract

Cited by 336 (3 self)
 Add to MetaCart
Morphological reconstruction is part of a set of image operators often referred to as geodesic. In the binary case, reconstruction simply extracts the connected components of a binary image I (the mask) which are \marked " by a (binary) image J contained in I. This transformation can
Learning Overcomplete Representations
, 2000
"... In an overcomplete basis, the number of basis vectors is greater than the dimensionality of the input, and the representation of an input is not a unique combination of basis vectors. Overcomplete representations have been advocated because they have greater robustness in the presence of noise, can ..."
Abstract

Cited by 354 (10 self)
 Add to MetaCart
be sparser, and can have greater flexibility in matching structure in the data. Overcomplete codes have also been proposed as a model of some of the response properties of neurons in primary visual cortex. Previous work has focused on finding the best representation of a signal using a fixed overcomplete
An EM Algorithm for WaveletBased Image Restoration
, 2002
"... This paper introduces an expectationmaximization (EM) algorithm for image restoration (deconvolution) based on a penalized likelihood formulated in the wavelet domain. Regularization is achieved by promoting a reconstruction with lowcomplexity, expressed in terms of the wavelet coecients, taking a ..."
Abstract

Cited by 352 (22 self)
 Add to MetaCart
This paper introduces an expectationmaximization (EM) algorithm for image restoration (deconvolution) based on a penalized likelihood formulated in the wavelet domain. Regularization is achieved by promoting a reconstruction with lowcomplexity, expressed in terms of the wavelet coecients, taking
Euclidean reconstruction from uncalibrated views
 Applications of Invariance in Computer Vision
, 1993
"... The possibility of calibrating a camera from image data alone, based on matched points identified in a series of images by a moving camera was suggested by Mayband and Faugeras. This result implies the possibility of Euclidean reconstruction from a series of images with a moving camera, or equivalen ..."
Abstract

Cited by 257 (14 self)
 Add to MetaCart
, or equivalently, Euclidean structurefrommotion from an uncalibrated camera. No tractable algorithm for implementing their methods for more than three images have been previously reported. This paper gives a practical algorithm for Euclidean reconstruction from several views with the same camera. The algorithm
Results 1  10
of
245,366