Results 1  10
of
1,903,910
The Nature of Statistical Learning Theory
, 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract

Cited by 12976 (32 self)
 Add to MetaCart
on the developed theory were proposed. This made statistical learning theory not only a tool for the theoretical analysis but also a tool for creating practical algorithms for estimating multidimensional functions. This article presents a very general overview of statistical learning theory including both
Maximum likelihood from incomplete data via the EM algorithm
 JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1977
"... A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value situat ..."
Abstract

Cited by 11807 (17 self)
 Add to MetaCart
A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value
A greedy algorithm for aligning DNA sequences
 J. COMPUT. BIOL
, 2000
"... For aligning DNA sequences that differ only by sequencing errors, or by equivalent errors from other sources, a greedy algorithm can be much faster than traditional dynamic programming approaches and yet produce an alignment that is guaranteed to be theoretically optimal. We introduce a new greedy a ..."
Abstract

Cited by 576 (16 self)
 Add to MetaCart
For aligning DNA sequences that differ only by sequencing errors, or by equivalent errors from other sources, a greedy algorithm can be much faster than traditional dynamic programming approaches and yet produce an alignment that is guaranteed to be theoretically optimal. We introduce a new greedy
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
for additive expansions based on any tting criterion. Specic algorithms are presented for least{squares, least{absolute{deviation, and Huber{M loss functions for regression, and multi{class logistic likelihood for classication. Special enhancements are derived for the particular case where the individual
GPSR: Greedy perimeter stateless routing for wireless networks
 MOBICOM
, 2000
"... We present Greedy Perimeter Stateless Routing (GPSR), a novel routing protocol for wireless datagram networks that uses the positions of touters and a packer's destination to make packet forwarding decisions. GPSR makes greedy forwarding decisions using only information about a router's i ..."
Abstract

Cited by 2238 (8 self)
 Add to MetaCart
We present Greedy Perimeter Stateless Routing (GPSR), a novel routing protocol for wireless datagram networks that uses the positions of touters and a packer's destination to make packet forwarding decisions. GPSR makes greedy forwarding decisions using only information about a router
Implementing data cubes efficiently
 In SIGMOD
, 1996
"... Decision support applications involve complex queries on very large databases. Since response times should be small, query optimization is critical. Users typically view the data as multidimensional data cubes. Each cell of the data cube is a view consisting of an aggregation of interest, like total ..."
Abstract

Cited by 545 (1 self)
 Add to MetaCart
to materializing the data cube. In this paper, we investigate the issue of which cells (views) to materialize when it is too expensive to materialize all views. A lattice framework is used to express dependencies among views. We present greedy algorithms that work off this lattice and determine a good set of views
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
CostAware WWW Proxy Caching Algorithms
 IN PROCEEDINGS OF THE 1997 USENIX SYMPOSIUM ON INTERNET TECHNOLOGY AND SYSTEMS
, 1997
"... Web caches can not only reduce network traffic and downloading latency, but can also affect the distribution of web traffic over the network through costaware caching. This paper introduces GreedyDualSize, which incorporates locality with cost and size concerns in a simple and nonparameterized fash ..."
Abstract

Cited by 544 (6 self)
 Add to MetaCart
parameterized fashion for high performance. Tracedriven simulations show that with the appropriate cost definition, GreedyDualSize outperforms existing web cache replacement algorithms in many aspects, including hit ratios, latency reduction and network cost reduction. In addition, GreedyDualSize can potentially
Greed is Good: Algorithmic Results for Sparse Approximation
, 2004
"... This article presents new results on using a greedy algorithm, orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries. It provides a sufficient condition under which both OMP and Donoho’s basis pursuit (BP) paradigm can recover the optimal representa ..."
Abstract

Cited by 916 (8 self)
 Add to MetaCart
This article presents new results on using a greedy algorithm, orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries. It provides a sufficient condition under which both OMP and Donoho’s basis pursuit (BP) paradigm can recover the optimal
An Efficient Boosting Algorithm for Combining Preferences
, 1999
"... The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new boosting ..."
Abstract

Cited by 707 (18 self)
 Add to MetaCart
The problem of combining preferences arises in several applications, such as combining the results of different search engines. This work describes an efficient algorithm for combining multiple preferences. We first give a formal framework for the problem. We then describe and analyze a new
Results 1  10
of
1,903,910