• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 670,190
Next 10 →

SURF: Speeded Up Robust Features

by Herbert Bay, Tinne Tuytelaars, Luc Van Gool - ECCV
"... Abstract. In this paper, we present a novel scale- and rotation-invariant interest point detector and descriptor, coined SURF (Speeded Up Ro-bust Features). It approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be comp ..."
Abstract - Cited by 897 (12 self) - Add to MetaCart
these methods to the essential. This leads to a combination of novel detection, description, and matching steps. The paper presents experimental results on a standard evaluation set, as well as on imagery obtained in the context of a real-life object recognition application. Both show SURF’s strong performance

Training Support Vector Machines: an Application to Face Detection

by Edgar Osuna, Robert Freund, Federico Girosi , 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract - Cited by 727 (1 self) - Add to MetaCart
criteria for the algorithm. We present experimental results of our implementation of SVM, and demonstrate the ...

Generic Schema Matching with Cupid

by Jayant Madhavan, Philip Bernstein, Erhard Rahm - In The VLDB Journal , 2001
"... Schema matching is a critical step in many applications, such as XML message mapping, data warehouse loading, and schema integration. In this paper, we investigate algorithms for generic schema matching, outside of any particular data model or application. We first present a taxonomy for past s ..."
Abstract - Cited by 604 (17 self) - Add to MetaCart
are the integrated use of linguistic and structural matching, context-dependent matching of shared types, and a bias toward leaf structure where much of the schema content resides. After describing our algorithm, we present experimental results that compare Cupid to two other schema matching systems.

Graph-based algorithms for Boolean function manipulation

by Randal E. Bryant - IEEE TRANSACTIONS ON COMPUTERS , 1986
"... In this paper we present a new data structure for representing Boolean functions and an associated set of manipulation algorithms. Functions are represented by directed, acyclic graphs in a manner similar to the representations introduced by Lee [1] and Akers [2], but with further restrictions on th ..."
Abstract - Cited by 3526 (46 self) - Add to MetaCart
to the sizes of the graphs being operated on, and hence are quite efficient as long as the graphs do not grow too large. We present experimental results from applying these algorithms to problems in logic design verification that demonstrate the practicality of our approach.

A theory of shape by space carving

by Kiriakos N. Kutulakos, Steven M. Seitz - In Proceedings of the 7th IEEE International Conference on Computer Vision (ICCV-99), volume I, pages 307– 314, Los Alamitos, CA , 1999
"... In this paper we consider the problem of computing the 3D shape of an unknown, arbitrarily-shaped scene from multiple photographs taken at known but arbitrarilydistributed viewpoints. By studying the equivalence class of all 3D shapes that reproduce the input photographs, we prove the existence of a ..."
Abstract - Cited by 566 (14 self) - Add to MetaCart
of a special member of this class, the photo hull, that (1) can be computed directly from photographs of the scene, and (2) subsumes all other members of this class. We then give a provably-correct algorithm, called Space Carving, for computing this shape and present experimental results on complex

Support Vector Machine Active Learning with Applications to Text Classification

by Simon Tong , Daphne Koller - JOURNAL OF MACHINE LEARNING RESEARCH , 2001
"... Support vector machines have met with significant success in numerous real-world learning tasks. However, like most machine learning algorithms, they are generally applied using a randomly selected training set classified in advance. In many settings, we also have the option of using pool-based acti ..."
Abstract - Cited by 735 (5 self) - Add to MetaCart
instances to request next. We provide a theoretical motivation for the algorithm using the notion of a version space. We present experimental results showing that employing our active learning method can significantly reduce the need for labeled training instances in both the standard inductive

Searching Distributed Collections With Inference Networks

by James P. Callan, Zhihong Lu, W. Bruce Croft - IN PROCEEDINGS OF THE 18TH ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL , 1995
"... The use of information retrieval systems in networked environments raises a new set of issues that have received little attention. These issues include ranking document collections for relevance to a query, selecting the best set of collections from a ranked list, and merging the document rankings t ..."
Abstract - Cited by 471 (36 self) - Add to MetaCart
that are returned from a set of collections. This paper describes methods of addressing each issue in the inference network model, discusses their implementation in the INQUERY system, and presents experimental results demonstrating their effectiveness.

Learning probabilistic relational models

by Nir Friedman, Lise Getoor, Daphne Koller, Avi Pfeffer - In IJCAI , 1999
"... A large portion of real-world data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much ..."
Abstract - Cited by 613 (30 self) - Add to MetaCart
of the dependency structure in a model. Moreover, we show how the learning procedure can exploit standard database retrieval techniques for efficient learning from large datasets. We present experimental results on both real and synthetic relational databases. 1

Efficient region tracking with parametric models of geometry and illumination

by Gregory D. Hager, Peter N. Belhumeur - PAMI , 1998
"... Abstract—As an object moves through the field of view of a camera, the images of the object may change dramatically. This is not simply due to the translation of the object across the image plane. Rather, complications arise due to the fact that the object undergoes changes in pose relative to the v ..."
Abstract - Cited by 563 (30 self) - Add to MetaCart
with techniques from robust statistics and treat occluded regions on the object as statistical outliers. Throughout, we present experimental results performed on live video sequences demonstrating the effectiveness and efficiency of our methods. Index Terms—Visual tracking, real-time vision, illumination, motion

The Aurora Experimental Framework for the Performance Evaluation of Speech Recognition Systems under Noisy Conditions

by David Pearce, Hans-günter Hirsch, Ericsson Eurolab Deutschland Gmbh - in ISCA ITRW ASR2000 , 2000
"... This paper describes a database designed to evaluate the performance of speech recognition algorithms in noisy conditions. The database may either be used to measure frontend feature extraction algorithms, using a defined HMM recognition back-end, or complete recognition systems. The source speech f ..."
Abstract - Cited by 534 (6 self) - Add to MetaCart
being used to evaluate alternative proposals for front-end feature extraction. The database has been made publicly available through ELRA so that other speech researchers to evaluate and compare the performance of noise robust algorithms. Recognition results will be presented for the first standard DSR
Next 10 →
Results 1 - 10 of 670,190
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University