• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 190,803
Next 10 →

Bagging Predictors

by Leo Breiman, Leo Breiman - Machine Learning , 1996
"... Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed by making ..."
Abstract - Cited by 3574 (1 self) - Add to MetaCart
Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed by making

Projection Pursuit Regression

by Jerome H. Friedman, Werner Stuetzle - Journal of the American Statistical Association , 1981
"... A new method for nonparametric multiple regression is presented. The procedure models the regression surface as a sum of general- smooth functions of linear combinations of the predictor variables in an iterative manner. It is more general than standard stepwise and stagewise regression procedures, ..."
Abstract - Cited by 555 (6 self) - Add to MetaCart
, does not require the definition of a metric in the predictor space, and lends itself to graphi-cal interpretation.

Representing twentieth century space-time climate variability, part 1: development of a 1961-90 mean monthly terrestrial climatology

by Mark New, Mike Hulme, Phil Jones - Journal of Climate , 1999
"... The construction of a 0.58 lat 3 0.58 long surface climatology of global land areas, excluding Antarctica, is described. The climatology represents the period 1961–90 and comprises a suite of nine variables: precipitation, wet-day frequency, mean temperature, diurnal temperature range, vapor pressur ..."
Abstract - Cited by 551 (12 self) - Add to MetaCart
to the period 1961–90, describes an extended suite of surface climate variables, explicitly incorporates elevation as a predictor variable, and contains an evaluation of regional errors associated with this and other commonly used climatologies. The climatology is already being used by researchers in the areas

Improved prediction of signal peptides -- SignalP 3.0

by Jannick Dyrløv Bendtsen, Henrik Nielsen, Gunnar von Heijne, Søren Brunak - J. MOL. BIOL. , 2004
"... We describe improvements of the currently most popular method for prediction of classically secreted proteins, SignalP. SignalP consists of two different predictors based on neural network and hidden Markov model algorithms, where both components have been updated. Motivated by the idea that the cle ..."
Abstract - Cited by 655 (7 self) - Add to MetaCart
We describe improvements of the currently most popular method for prediction of classically secreted proteins, SignalP. SignalP consists of two different predictors based on neural network and hidden Markov model algorithms, where both components have been updated. Motivated by the idea

Greedy Function Approximation: A Gradient Boosting Machine

by Jerome H. Friedman - Annals of Statistics , 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract - Cited by 951 (12 self) - Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed

Wattch: A Framework for Architectural-Level Power Analysis and Optimizations

by David Brooks, Vivek Tiwari, Margaret Martonosi - In Proceedings of the 27th Annual International Symposium on Computer Architecture , 2000
"... Power dissipation and thermal issues are increasingly significant in modern processors. As a result, it is crucial that power/performance tradeoffs be made more visible to chip architects and even compiler writers, in addition to circuit designers. Most existing power analysis tools achieve high ..."
Abstract - Cited by 1295 (43 self) - Add to MetaCart
high accuracy by calculating power estimates for designs only after layout or floorplanning are complete In addition to being available only late in the design process, such tools are often quite slow, which compounds the difficulty of running them for a large space of design possibilities.

The SPLASH-2 programs: Characterization and methodological considerations

by Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, Anoop Gupta - INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE , 1995
"... The SPLASH-2 suite of parallel applications has recently been released to facilitate the study of centralized and distributed shared-address-space multiprocessors. In this context, this paper has two goals. One is to quantitatively characterize the SPLASH-2 programs in terms of fundamental propertie ..."
Abstract - Cited by 1399 (12 self) - Add to MetaCart
The SPLASH-2 suite of parallel applications has recently been released to facilitate the study of centralized and distributed shared-address-space multiprocessors. In this context, this paper has two goals. One is to quantitatively characterize the SPLASH-2 programs in terms of fundamental

Social change and crime rate trends: a routine activity approach

by Lawrence E Cohen, Marcus Felson - American Sociological Review , 1979
"... In this paper we present a "routine activity approach " for analyzing crime rate trends and cycles. Rather than emphasizing the characteristics of offenders, with this approach we concentrate upon the circumstances in which they carry out predatory criminal acts. Most criminal acts require ..."
Abstract - Cited by 657 (5 self) - Add to MetaCart
require convergence in space and time of likely offenders, suitable targets and the absence of capable guardians against crime. Human ecological theory facilitates an investigation into the way in which social structure produces this convergence, hence allowing illegal activities to feed upon the legal

An introduction to variable and feature selection

by Isabelle Guyon - Journal of Machine Learning Research , 2003
"... Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available. ..."
Abstract - Cited by 1283 (16 self) - Add to MetaCart
Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available.

Regression Shrinkage and Selection Via the Lasso

by Robert Tibshirani - Journal of the Royal Statistical Society, Series B , 1994
"... We propose a new method for estimation in linear models. The "lasso" minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactl ..."
Abstract - Cited by 4055 (51 self) - Add to MetaCart
We propose a new method for estimation in linear models. The "lasso" minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactly zero and hence gives interpretable models. Our simulation studies suggest that the lasso enjoys some of the favourable properties of both subset selection and ridge regression. It produces interpretable models like subset selection and exhibits the stability of ridge regression. There is also an interesting relationship with recent work in adaptive function estimation by Donoho and Johnstone. The lasso idea is quite general and can be applied in a variety of statistical models: extensions to generalized regression models and tree-based models are briefly described. Keywords: regression, subset selection, shrinkage, quadratic programming. 1 Introduction Consider the usual regression situation: we h...
Next 10 →
Results 1 - 10 of 190,803
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University