Results 1  10
of
2,601,224
Maximum likelihood from incomplete data via the EM algorithm
 JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B
, 1977
"... A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone behaviour of the likelihood and convergence of the algorithm is derived. Many examples are sketched, including missing value situat ..."
Abstract

Cited by 11962 (17 self)
 Add to MetaCart
situations, applications to grouped, censored or truncated data, finite mixture models, variance component estimation, hyperparameter estimation, iteratively reweighted least squares and factor analysis.
A Predictive LeastSquares Principle
, 1985
"... A new principle of leastsquares estimation is described, which extends the old in allowing the estimation of the number of the parameters along with their values. Just as the old principle, the new one too uses only a sum of squares, which now, however, represent prediction errors rather than fitti ..."
Abstract
 Add to MetaCart
A new principle of leastsquares estimation is described, which extends the old in allowing the estimation of the number of the parameters along with their values. Just as the old principle, the new one too uses only a sum of squares, which now, however, represent prediction errors rather than
Least squares quantization in pcm.
 Bell Telephone Laboratories Paper
, 1982
"... AbstractIt has long been realized that in pulsecode modulation (PCM), with a given ensemble of signals to handle, the quantum values should be spaced more closely in the voltage regions where the signal amplitude is more likely to fall. It has been shown by Panter and Dite that, in the limit as t ..."
Abstract

Cited by 1362 (0 self)
 Add to MetaCart
AbstractIt has long been realized that in pulsecode modulation (PCM), with a given ensemble of signals to handle, the quantum values should be spaced more closely in the voltage regions where the signal amplitude is more likely to fall. It has been shown by Panter and Dite that, in the limit as the number of quanta becomes infinite, the asymptotic fractional density of quanta per unit voltage should vary as the onethird power of the probability density per unit voltage of signal amplitudes. In this paper the corresponding result for any finite number of quanta is derived; that is, necessary conditions are found that the quanta and associated quantization intervals of an optimum finite quantization scheme must satisfy. The optimization criterion used is that the average quantization noise power be a minimum. It is shown that the result obtained here goes over into the Panter and Dite result as the number of quanta become large. The optimum quantization schemes for 26 quanta, b = 1,2, t ,7, are given numerically for Gaussian and for Laplacian distribution of signal amplitudes.
Least Median of Squares Regression
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 1984
"... ..."
Least angle regression
, 2004
"... The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to s ..."
Abstract

Cited by 1325 (37 self)
 Add to MetaCart
to select a parsimonious set for the efficient prediction of a response variable. Least Angle Regression (LARS), a new model selection algorithm, is a useful and less greedy version of traditional forward selection methods. Three main properties are derived: (1) A simple modification of the LARS algorithm
LeastSquares Policy Iteration
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2003
"... We propose a new approach to reinforcement learning for control problems which combines valuefunction approximation with linear architectures and approximate policy iteration. This new approach ..."
Abstract

Cited by 462 (12 self)
 Add to MetaCart
We propose a new approach to reinforcement learning for control problems which combines valuefunction approximation with linear architectures and approximate policy iteration. This new approach
Benchmarking Least Squares Support Vector Machine Classifiers
 NEURAL PROCESSING LETTERS
, 2001
"... In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LSSVMs), a least squares cost function is proposed so as to obtain a linear set of eq ..."
Abstract

Cited by 479 (46 self)
 Add to MetaCart
In Support Vector Machines (SVMs), the solution of the classification problem is characterized by a (convex) quadratic programming (QP) problem. In a modified version of SVMs, called Least Squares SVM classifiers (LSSVMs), a least squares cost function is proposed so as to obtain a linear set
Valuing American options by simulation: A simple leastsquares approach
 Review of Financial Studies
, 2001
"... This article presents a simple yet powerful new approach for approximating the value of America11 options by simulation. The kcy to this approach is the use of least squares to estimate the conditional expected payoff to the optionholder from continuation. This makes this approach readily applicable ..."
Abstract

Cited by 515 (9 self)
 Add to MetaCart
This article presents a simple yet powerful new approach for approximating the value of America11 options by simulation. The kcy to this approach is the use of least squares to estimate the conditional expected payoff to the optionholder from continuation. This makes this approach readily
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 654 (21 self)
 Add to MetaCart
gradient algorithms, indicating that I~QR is the most reliable algorithm when A is illconditioned. Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: ApprorJmationleast squares approximation; G.1.3 [Numerical Analysis]: Numerical Linear Algebralinear systems (direct and
Direct least Square Fitting of Ellipses
, 1998
"... This work presents a new efficient method for fitting ellipses to scattered data. Previous algorithms either fitted general conics or were computationally expensive. By minimizing the algebraic distance subject to the constraint 4ac  b² = 1 the new method incorporates the ellipticity constraint ..."
Abstract

Cited by 434 (3 self)
 Add to MetaCart
This work presents a new efficient method for fitting ellipses to scattered data. Previous algorithms either fitted general conics or were computationally expensive. By minimizing the algebraic distance subject to the constraint 4ac  b² = 1 the new method incorporates the ellipticity constraint into the normalization factor. The proposed method combines several advantages: (i) It is ellipsespecific so that even bad data will always return an ellipse; (ii) It can be solved naturally by a generalized eigensystem and (iii) it is extremely robust, efficient and easy to implement.
Results 1  10
of
2,601,224