Results 1 - 10
of
17,244
A solution to the simultaneous localization and map building (SLAM) problem
- IEEE Transactions on Robotics and Automation
, 2001
"... Abstract—The simultaneous localization and map building (SLAM) problem asks if it is possible for an autonomous vehicle to start in an unknown location in an unknown environment and then to incrementally build a map of this environment while simultaneously using this map to compute absolute vehicle ..."
Abstract
-
Cited by 505 (30 self)
- Add to MetaCart
location. Starting from the estimation-theoretic foundations of this problem developed in [1]–[3], this paper proves that a solution to the SLAM problem is indeed possible. The underlying structure of the SLAM problem is first elucidated. A proof that the estimated map converges monotonically to a relative
FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem
- In Proceedings of the AAAI National Conference on Artificial Intelligence
, 2002
"... The ability to simultaneously localize a robot and accurately map its surroundings is considered by many to be a key prerequisite of truly autonomous robots. However, few approaches to this problem scale up to handle the very large number of landmarks present in real environments. Kalman filter-base ..."
Abstract
-
Cited by 599 (10 self)
- Add to MetaCart
The ability to simultaneously localize a robot and accurately map its surroundings is considered by many to be a key prerequisite of truly autonomous robots. However, few approaches to this problem scale up to handle the very large number of landmarks present in real environments. Kalman filter
Markov Random Field Models in Computer Vision
, 1994
"... . A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model. The l ..."
Abstract
-
Cited by 516 (18 self)
- Add to MetaCart
. A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model
Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images.
- IEEE Trans. Pattern Anal. Mach. Intell.
, 1984
"... Abstract-We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs di ..."
Abstract
-
Cited by 5126 (1 self)
- Add to MetaCart
system isolates low energy states ("annealing"), or what is the same thing, the most probable states under the Gibbs distribution. The analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations. The result
A Practical Bayesian Framework for Backprop Networks
- Neural Computation
, 1991
"... A quantitative and practical Bayesian framework is described for learning of mappings in feedforward networks. The framework makes possible: (1) objective comparisons between solutions using alternative network architectures ..."
Abstract
-
Cited by 494 (19 self)
- Add to MetaCart
A quantitative and practical Bayesian framework is described for learning of mappings in feedforward networks. The framework makes possible: (1) objective comparisons between solutions using alternative network architectures
Generic Schema Matching with Cupid
- In The VLDB Journal
, 2001
"... Schema matching is a critical step in many applications, such as XML message mapping, data warehouse loading, and schema integration. In this paper, we investigate algorithms for generic schema matching, outside of any particular data model or application. We first present a taxonomy for past s ..."
Abstract
-
Cited by 604 (17 self)
- Add to MetaCart
solutions, showing that a rich range of techniques is available. We then propose a new algorithm, Cupid, that discovers mappings between schema elements based on their names, data types, constraints, and schema structure, using a broader set of techniques than past approaches. Some of our innovations
Knowledge-based Analysis of Microarray Gene Expression Data By Using Support Vector Machines
, 2000
"... We introduce a method of functionally classifying genes by using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector machines (SVMs). SVMs are considered a supervised computer learning method because they exploit prior knowledge of ..."
Abstract
-
Cited by 520 (8 self)
- Add to MetaCart
of gene function to identify unknown genes of similar function from expression data. SVMs avoid several problems associated with unsupervised clustering methods, such as hierarchical clustering and self-organizing maps. SVMs have many mathematical features that make them attractive for gene expression
Pig Latin: A Not-So-Foreign Language for Data Processing
"... There is a growing need for ad-hoc analysis of extremely large data sets, especially at internet companies where innovation critically depends on being able to analyze terabytes of data collected every day. Parallel database products, e.g., Teradata, offer a solution, but are usually prohibitively e ..."
Abstract
-
Cited by 607 (13 self)
- Add to MetaCart
There is a growing need for ad-hoc analysis of extremely large data sets, especially at internet companies where innovation critically depends on being able to analyze terabytes of data collected every day. Parallel database products, e.g., Teradata, offer a solution, but are usually prohibitively
Where the REALLY Hard Problems Are
- IN J. MYLOPOULOS AND R. REITER (EDS.), PROCEEDINGS OF 12TH INTERNATIONAL JOINT CONFERENCE ON AI (IJCAI-91),VOLUME 1
, 1991
"... It is well known that for many NP-complete problems, such as K-Sat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NP-complete problems can be summarized by at least one "order parameter", and that the hard p ..."
Abstract
-
Cited by 683 (1 self)
- Add to MetaCart
of a solution changes abruptly from near 0 to near 1. It is the high density of well-separated almost solutions (local minima) at this boundary that cause search algorithms to "thrash". This boundary is a type of phase transition and we show that it is preserved under mappings between
A tutorial on support vector machines for pattern recognition
- Data Mining and Knowledge Discovery
, 1998
"... The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and non-separable data, working through a non-trivial example in detail. We describe a mechanical analogy, and discuss when SV ..."
Abstract
-
Cited by 3393 (12 self)
- Add to MetaCart
SVM solutions are unique and when they are global. We describe how support vector training can be practically implemented, and discuss in detail the kernel mapping technique which is used to construct SVM solutions which are nonlinear in the data. We show how Support Vector machines can have very
Results 1 - 10
of
17,244