Results 1  10
of
3,335,119
Markov chains for exploring posterior distributions
 Annals of Statistics
, 1994
"... Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at ..."
Abstract

Cited by 1113 (6 self)
 Add to MetaCart
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
Distributed Snapshots: Determining Global States of Distributed Systems
 ACM TRANSACTIONS ON COMPUTER SYSTEMS
, 1985
"... This paper presents an algorithm by which a process in a distributed system determines a global state of the system during a computation. Many problems in distributed systems can be cast in terms of the problem of detecting global states. For instance, the global state detection algorithm helps to s ..."
Abstract

Cited by 1196 (6 self)
 Add to MetaCart
This paper presents an algorithm by which a process in a distributed system determines a global state of the system during a computation. Many problems in distributed systems can be cast in terms of the problem of detecting global states. For instance, the global state detection algorithm helps
Evaluating the Accuracy of SamplingBased Approaches to the Calculation of Posterior Moments
 IN BAYESIAN STATISTICS
, 1992
"... Data augmentation and Gibbs sampling are two closely related, samplingbased approaches to the calculation of posterior moments. The fact that each produces a sample whose constituents are neither independent nor identically distributed complicates the assessment of convergence and numerical accurac ..."
Abstract

Cited by 580 (12 self)
 Add to MetaCart
Data augmentation and Gibbs sampling are two closely related, samplingbased approaches to the calculation of posterior moments. The fact that each produces a sample whose constituents are neither independent nor identically distributed complicates the assessment of convergence and numerical
Virtual Time and Global States of Distributed Systems
 PARALLEL AND DISTRIBUTED ALGORITHMS
, 1988
"... A distributed system can be characterized by the fact that the global state is distributed and that a common time base does not exist. However, the notion of time is an important concept in every day life of our decentralized "real world" and helps to solve problems like getting a consiste ..."
Abstract

Cited by 734 (5 self)
 Add to MetaCart
A distributed system can be characterized by the fact that the global state is distributed and that a common time base does not exist. However, the notion of time is an important concept in every day life of our decentralized "real world" and helps to solve problems like getting a
Knowledge and Common Knowledge in a Distributed Environment
 Journal of the ACM
, 1984
"... : Reasoning about knowledge seems to play a fundamental role in distributed systems. Indeed, such reasoning is a central part of the informal intuitive arguments used in the design of distributed protocols. Communication in a distributed system can be viewed as the act of transforming the system&apo ..."
Abstract

Cited by 571 (55 self)
 Add to MetaCart
's state of knowledge. This paper presents a general framework for formalizing and reasoning about knowledge in distributed systems. We argue that states of knowledge of groups of processors are useful concepts for the design and analysis of distributed protocols. In particular, distributed knowledge
Implementing FaultTolerant Services Using the State Machine Approach: A Tutorial
 ACM COMPUTING SURVEYS
, 1990
"... The state machine approach is a general method for implementing faulttolerant services in distributed systems. This paper reviews the approach and describes protocols for two different failure modelsByzantine and failstop. System reconfiguration techniques for removing faulty components and i ..."
Abstract

Cited by 958 (9 self)
 Add to MetaCart
The state machine approach is a general method for implementing faulttolerant services in distributed systems. This paper reviews the approach and describes protocols for two different failure modelsByzantine and failstop. System reconfiguration techniques for removing faulty components
On Sequential Monte Carlo Sampling Methods for Bayesian Filtering
 STATISTICS AND COMPUTING
, 2000
"... In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and nonGaussian. A general importance sampling framework is develop ..."
Abstract

Cited by 1029 (75 self)
 Add to MetaCart
In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and nonGaussian. A general importance sampling framework
Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on the World Wide Web
 IN PROC. 29TH ACM SYMPOSIUM ON THEORY OF COMPUTING (STOC
, 1997
"... We describe a family of caching protocols for distributed networks that can be used to decrease or eliminate the occurrence of hot spots in the network. Our protocols are particularly designed for use with very large networks such as the Internet, where delays caused by hot spots can be severe, and ..."
Abstract

Cited by 687 (10 self)
 Add to MetaCart
We describe a family of caching protocols for distributed networks that can be used to decrease or eliminate the occurrence of hot spots in the network. Our protocols are particularly designed for use with very large networks such as the Internet, where delays caused by hot spots can be severe
FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem
 In Proceedings of the AAAI National Conference on Artificial Intelligence
, 2002
"... The ability to simultaneously localize a robot and accurately map its surroundings is considered by many to be a key prerequisite of truly autonomous robots. However, few approaches to this problem scale up to handle the very large number of landmarks present in real environments. Kalman filterbase ..."
Abstract

Cited by 585 (10 self)
 Add to MetaCart
based algorithms, for example, require time quadratic in the number of landmarks to incorporate each sensor observation. This paper presents FastSLAM, an algorithm that recursively estimates the full posterior distribution over robot pose and landmark locations, yet scales logarithmically with the number
Learning Stochastic Logic Programs
, 2000
"... Stochastic Logic Programs (SLPs) have been shown to be a generalisation of Hidden Markov Models (HMMs), stochastic contextfree grammars, and directed Bayes' nets. A stochastic logic program consists of a set of labelled clauses p:C where p is in the interval [0,1] and C is a firstorder r ..."
Abstract

Cited by 1177 (80 self)
 Add to MetaCart
order rangerestricted definite clause. This paper summarises the syntax, distributional semantics and proof techniques for SLPs and then discusses how a standard Inductive Logic Programming (ILP) system, Progol, has been modied to support learning of SLPs. The resulting system 1) nds an SLP with uniform
Results 1  10
of
3,335,119