• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 3,740
Next 10 →

Possibilistic Instance-Based Learning

by Eyke Hüllermeier
"... A method of instance-based learning is introduced which makes use of possibility theory and fuzzy sets. Particularly, a possibilistic version of the similarity-guided extrapolation principle underlying the instancebased learning paradigm is proposed. This version is compared to the commonly used ..."
Abstract - Cited by 8 (3 self) - Add to MetaCart
A method of instance-based learning is introduced which makes use of possibility theory and fuzzy sets. Particularly, a possibilistic version of the similarity-guided extrapolation principle underlying the instancebased learning paradigm is proposed. This version is compared to the commonly

Instance-based learning algorithms

by David W. Aha, Dennis Kibler, Marc K. Albert - Machine Learning , 1991
"... Abstract. Storing and using specific instances improves the performance of several supervised learning algorithms. These include algorithms that learn decision trees, classification rules, and distributed networks. However, no investigation has analyzed algorithms that use only specific instances to ..."
Abstract - Cited by 1389 (18 self) - Add to MetaCart
to solve incremental learning tasks. In this paper, we describe a framework and methodology, called instance-based learning, that generates classification predictions using only specific instances. Instance-based learning algorithms do not maintain a set of abstractions derived from specific instances

Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions

by Xiaojin Zhu , Zoubin Ghahramani, John Lafferty - IN ICML , 2003
"... An approach to semi-supervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning ..."
Abstract - Cited by 752 (14 self) - Add to MetaCart
An approach to semi-supervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning

A learning algorithm for Boltzmann machines

by H. Ackley, E. Hinton, J. Sejnowski - Cognitive Science , 1985
"... The computotionol power of massively parallel networks of simple processing elements resides in the communication bandwidth provided by the hardware connections between elements. These connections con allow a significant fraction of the knowledge of the system to be applied to an instance of a probl ..."
Abstract - Cited by 584 (13 self) - Add to MetaCart
The computotionol power of massively parallel networks of simple processing elements resides in the communication bandwidth provided by the hardware connections between elements. These connections con allow a significant fraction of the knowledge of the system to be applied to an instance of a

Distance metric learning, with application to clustering with sideinformation,”

by Eric P Xing , Andrew Y Ng , Michael I Jordan , Stuart Russell - in Advances in Neural Information Processing Systems 15, , 2002
"... Abstract Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as K-means initially fails to find one that is meaningful to a user, the only recourse may be for ..."
Abstract - Cited by 818 (13 self) - Add to MetaCart
to provide examples. In this paper, we present an algorithm that, given examples of similar (and, if desired, dissimilar) pairs of points in Ê Ò , learns a distance metric over Ê Ò that respects these relationships. Our method is based on posing metric learning as a convex optimization problem, which allows

Support Vector Machine Active Learning with Applications to Text Classification

by Simon Tong , Daphne Koller - JOURNAL OF MACHINE LEARNING RESEARCH , 2001
"... Support vector machines have met with significant success in numerous real-world learning tasks. However, like most machine learning algorithms, they are generally applied using a randomly selected training set classified in advance. In many settings, we also have the option of using pool-based acti ..."
Abstract - Cited by 735 (5 self) - Add to MetaCart
Support vector machines have met with significant success in numerous real-world learning tasks. However, like most machine learning algorithms, they are generally applied using a randomly selected training set classified in advance. In many settings, we also have the option of using pool-based

Reduction Techniques for Instance-based Learning Algorithms

by D. Randall Wilson, Tony R. Martinez - MACHINE LEARNING , 2000
"... Instance-based learning algorithms are often faced with the problem of deciding which instances to store for use during generalization. Storing too many instances can result in large memory requirements and slow execution speed, and can cause an oversensitivity to noise. This paper has two main pur ..."
Abstract - Cited by 213 (3 self) - Add to MetaCart
Instance-based learning algorithms are often faced with the problem of deciding which instances to store for use during generalization. Storing too many instances can result in large memory requirements and slow execution speed, and can cause an oversensitivity to noise. This paper has two main

LabelMe: A Database and Web-Based Tool for Image Annotation

by B. C. Russell, A. Torralba, K. P. Murphy, W. T. Freeman , 2008
"... We seek to build a large collection of images with ground truth labels to be used for object detection and recognition research. Such data is useful for supervised learning and quantitative evaluation. To achieve this, we developed a web-based tool that allows easy image annotation and instant sha ..."
Abstract - Cited by 679 (46 self) - Add to MetaCart
We seek to build a large collection of images with ground truth labels to be used for object detection and recognition research. Such data is useful for supervised learning and quantitative evaluation. To achieve this, we developed a web-based tool that allows easy image annotation and instant

Toward an instance theory of automatization

by Gordon D. Logan - Psychological Review , 1988
"... This article presents a theory in which automatization is construed as the acquisition of a domain-specific knowledge base, formed of separate representations, instances, of each exposure to the task. Processing is considered automatic if it relies on retrieval of stored instances, which will occur ..."
Abstract - Cited by 647 (38 self) - Add to MetaCart
This article presents a theory in which automatization is construed as the acquisition of a domain-specific knowledge base, formed of separate representations, instances, of each exposure to the task. Processing is considered automatic if it relies on retrieval of stored instances, which will occur

Relational Instance-Based Learning

by Werner Emde, Dietrich Wettschereck - Proceedings of the Thirteenth International Conference on Machine Learning , 1996
"... A relational instance-based learning algorithm, called Ribl, is motivated and developed in this paper. We argue that instancebased methods o#er solutions to the often unsatisfactory behavior of current inductive logic programming #ILP# approaches in domains with continuous attribute values a ..."
Abstract - Cited by 79 (1 self) - Add to MetaCart
A relational instance-based learning algorithm, called Ribl, is motivated and developed in this paper. We argue that instancebased methods o#er solutions to the often unsatisfactory behavior of current inductive logic programming #ILP# approaches in domains with continuous attribute values
Next 10 →
Results 1 - 10 of 3,740
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University