Results 1  10
of
222,841
PolynomialTime Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
 SIAM J. on Computing
, 1997
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 1268 (5 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
Handling Expected PolynomialTime Strategies in SimulationBased Security Proofs
, 2006
"... Abstract The standard class of adversaries considered in cryptography is that of strict polynomialtime probabilistic machines. However, expected polynomialtime machines are often also considered. For example, there are many zeroknowledge protocols for which the only known simulation techniques ru ..."
Abstract
 Add to MetaCart
Abstract The standard class of adversaries considered in cryptography is that of strict polynomialtime probabilistic machines. However, expected polynomialtime machines are often also considered. For example, there are many zeroknowledge protocols for which the only known simulation techniques
Simulating Physics with Computers
 SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 601 (1 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
Handling Expected PolynomialTime Strategies in SimulationBased Security Proofs
 In 2nd TCC, SpringerVerlag (LNCS 3378
, 2005
"... Abstract. The standard class of adversaries considered in cryptography is that of strict polynomialtime probabilistic machines (or circuits). However, expected polynomialtime machines are often also considered. For example, there are many zeroknowledge protocols for which the only simulation tech ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Abstract. The standard class of adversaries considered in cryptography is that of strict polynomialtime probabilistic machines (or circuits). However, expected polynomialtime machines are often also considered. For example, there are many zeroknowledge protocols for which the only simulation
A Fast Algorithm for Particle Simulations
, 1987
"... this paper to the case where the potential (or force) at a point is a sum of pairwise An algorithm is presented for the rapid evaluation of the potential and force fields in systems involving large numbers of particles interactions. More specifically, we consider potentials of whose interactions a ..."
Abstract

Cited by 1145 (19 self)
 Add to MetaCart
this paper to the case where the potential (or force) at a point is a sum of pairwise An algorithm is presented for the rapid evaluation of the potential and force fields in systems involving large numbers of particles interactions. More specifically, we consider potentials of whose interactions are Coulombic or gravitational in nature. For a the form system of N particles, an amount of work of the order O(N 2 ) has traditionally been required to evaluate all pairwise interactions, un F5F far 1 (F near 1F external ), less some approximation or truncation method is used. The algorithm of the present paper requires an amount of work proportional to N to evaluate all interactions to within roundoff error, making it where F near (when present) is a rapidly decaying potential con
Strict Polynomialtime in Simulation and Extraction
, 2004
"... The notion of efficient computation is usually identified in cryptography and complexity with (strict) probabilistic polynomial time. However, until recently, in order to obtain constantround ..."
Abstract

Cited by 51 (8 self)
 Add to MetaCart
The notion of efficient computation is usually identified in cryptography and complexity with (strict) probabilistic polynomial time. However, until recently, in order to obtain constantround
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken into consi ..."
Abstract

Cited by 1103 (7 self)
 Add to MetaCart
A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken
An Experimental Comparison of MinCut/MaxFlow Algorithms for Energy Minimization in Vision
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2001
"... After [10, 15, 12, 2, 4] minimum cut/maximum flow algorithms on graphs emerged as an increasingly useful tool for exact or approximate energy minimization in lowlevel vision. The combinatorial optimization literature provides many mincut/maxflow algorithms with different polynomial time compl ..."
Abstract

Cited by 1311 (54 self)
 Add to MetaCart
After [10, 15, 12, 2, 4] minimum cut/maximum flow algorithms on graphs emerged as an increasingly useful tool for exact or approximate energy minimization in lowlevel vision. The combinatorial optimization literature provides many mincut/maxflow algorithms with different polynomial time
A comparative analysis of selection schemes used in genetic algorithms
 Foundations of Genetic Algorithms
, 1991
"... This paper considers a number of selection schemes commonly used in modern genetic algorithms. Specifically, proportionate reproduction, ranking selection, tournament selection, and Genitor (or «steady state") selection are compared on the basis of solutions to deterministic difference or d ..."
Abstract

Cited by 512 (32 self)
 Add to MetaCart
or differential equations, which are verified through computer simulations. The analysis provides convenient approximate or exact solutions as well as useful convergence time and growth ratio estimates. The paper recommends practical application of the analyses and suggests a number of paths for more detailed
The StructureMapping Engine: Algorithm and Examples
 Artificial Intelligence
, 1989
"... This paper describes the StructureMapping Engine (SME), a program for studying analogical processing. SME has been built to explore Gentner's Structuremapping theory of analogy, and provides a "tool kit" for constructing matching algorithms consistent with this theory. Its flexibili ..."
Abstract

Cited by 512 (115 self)
 Add to MetaCart
, and demonstrate that most of the steps are polynomial, typically bounded by O (N 2 ). Next we demonstrate some examples of its operation taken from our cognitive simulation studies and work in machine learning. Finally, we compare SME to other analogy programs and discuss several areas for future work. This paper
Results 1  10
of
222,841