Results 1  10
of
4,335
A polynomialtime tree decomposition to minimize congestion
 IN PROCEEDINGS OF THE 15TH ACM SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES (SPAA
, 2003
"... Räcke recently gave a remarkable proof showing that any undirected multicommodity flow problem can be routed in an oblivious fashion with congestion that is within a factor of O(log³ n) of the best offline solution to the problem. He also presented interesting applications of this result to distrib ..."
Abstract

Cited by 65 (0 self)
 Add to MetaCart
decomposition gives an improved competitive ratio for congestion of O(log³ n log log n). In an independent result in this conference, Bienkowski, Korzeniowski, and Räcke give a polynomialtime method for constructing a decomposition tree with competitive ratio O(log 4 n). We note that our original submission
Factoring polynomials with rational coefficients
 MATH. ANN
, 1982
"... In this paper we present a polynomialtime algorithm to solve the following problem: given a nonzero polynomial fe Q[X] in one variable with rational coefficients, find the decomposition of f into irreducible factors in Q[X]. It is well known that this is equivalent to factoring primitive polynomia ..."
Abstract

Cited by 961 (11 self)
 Add to MetaCart
In this paper we present a polynomialtime algorithm to solve the following problem: given a nonzero polynomial fe Q[X] in one variable with rational coefficients, find the decomposition of f into irreducible factors in Q[X]. It is well known that this is equivalent to factoring primitive
Convolution Kernels on Discrete Structures
, 1999
"... We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on an infinite set from kernels involving generators of the set. The family of kernels generated generalizes the fa ..."
Abstract

Cited by 506 (0 self)
 Add to MetaCart
We introduce a new method of constructing kernels on sets whose elements are discrete structures like strings, trees and graphs. The method can be applied iteratively to build a kernel on an infinite set from kernels involving generators of the set. The family of kernels generated generalizes
Large margin methods for structured and interdependent output variables
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2005
"... Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary ..."
Abstract

Cited by 624 (12 self)
 Add to MetaCart
that solves the optimization problem in polynomial time for a large class of problems. The proposed method has important applications in areas such as computational biology, natural language processing, information retrieval/extraction, and optical character recognition. Experiments from various domains
Proof verification and hardness of approximation problems
 IN PROC. 33RD ANN. IEEE SYMP. ON FOUND. OF COMP. SCI
, 1992
"... We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probabilit ..."
Abstract

Cited by 797 (39 self)
 Add to MetaCart
in the proof (though this number is a very slowly growing function of the input length). As a consequence we prove that no MAX SNPhard problem has a polynomial time approximation scheme, unless NP=P. The class MAX SNP was defined by Papadimitriou and Yannakakis [82] and hard problems for this class include
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants.
 Machine Learning,
, 1999
"... Abstract. Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be very successful in improving the accuracy of certain classifiers for artificial and realworld datasets. We review these algorithms and describe a large empirical study comparing several vari ..."
Abstract

Cited by 707 (2 self)
 Add to MetaCart
variants in conjunction with a decision tree inducer (three variants) and a NaiveBayes inducer. The purpose of the study is to improve our understanding of why and when these algorithms, which use perturbation, reweighting, and combination techniques, affect classification error. We provide a bias
Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems
 Journal of the ACM
, 1998
"... Abstract. We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c Ͼ 1 and given any n nodes in 2 , a randomized version of the scheme finds a (1 ϩ 1/c)approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. When the nodes ..."
Abstract

Cited by 397 (2 self)
 Add to MetaCart
to Christofides) achieves a 3/2approximation in polynomial time. We also give similar approximation schemes for some other NPhard Euclidean problems: Minimum Steiner Tree, kTSP, and kMST. (The running times of the algorithm for kTSP and kMST involve an additional multiplicative factor k.) The previous best
Aggregation in Probabilistic Databases via Knowledge Compilation
"... This paper presents a query evaluation technique for positive relational algebra queries with aggregates on a representation system for probabilistic data based on the algebraic structures of semiring and semimodule. The core of our evaluation technique is a procedure that compiles semimodule and se ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
the connection between query tractability and polynomialtime decomposition trees. A prototype of the technique is incorporated in the probabilistic database engine SPROUT. We report on performance experiments with custom datasets and TPCH data. 1.
Complexity of finding embeddings in a ktree
 SIAM JOURNAL OF DISCRETE MATHEMATICS
, 1987
"... A ktree is a graph that can be reduced to the kcomplete graph by a sequence of removals of a degree k vertex with completely connected neighbors. We address the problem of determining whether a graph is a partial graph of a ktree. This problem is motivated by the existence of polynomial time al ..."
Abstract

Cited by 386 (1 self)
 Add to MetaCart
A ktree is a graph that can be reduced to the kcomplete graph by a sequence of removals of a degree k vertex with completely connected neighbors. We address the problem of determining whether a graph is a partial graph of a ktree. This problem is motivated by the existence of polynomial time
A general approximation technique for constrained forest problems
 SIAM J. COMPUT.
, 1995
"... We present a general approximation technique for a large class of graph problems. Our technique mostly applies to problems of covering, at minimum cost, the vertices of a graph with trees, cycles, or paths satisfying certain requirements. In particular, many basic combinatorial optimization proble ..."
Abstract

Cited by 414 (21 self)
 Add to MetaCart
problems fit in this framework, including the shortest path, minimumcost spanning tree, minimumweight perfect matching, traveling salesman, and Steiner tree problems. Our technique produces approximation algorithms that run in O(n log n) time and come within a factor of 2 of optimal for most
Results 1  10
of
4,335