Results 1  10
of
436,544
A NEW POLYNOMIALTIME ALGORITHM FOR LINEAR PROGRAMMING
 COMBINATORICA
, 1984
"... We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than the ell ..."
Abstract

Cited by 857 (3 self)
 Add to MetaCart
We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than
PolynomialTime Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
 SIAM J. on Computing
, 1997
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 1278 (4 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
Relational Queries Computable in Polynomial Time
 Information and Control
, 1986
"... We characterize the polynomial time computable queries as those expressible in relational calculus plus a least fixed point operator and a total ordering on the universe. We also show that even without the ordering one application of fixed point suffices to express any query expressible with several ..."
Abstract

Cited by 318 (17 self)
 Add to MetaCart
We characterize the polynomial time computable queries as those expressible in relational calculus plus a least fixed point operator and a total ordering on the universe. We also show that even without the ordering one application of fixed point suffices to express any query expressible
Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems
 Journal of the ACM
, 1998
"... Abstract. We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c Ͼ 1 and given any n nodes in 2 , a randomized version of the scheme finds a (1 ϩ 1/c)approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. When the nodes ..."
Abstract

Cited by 395 (2 self)
 Add to MetaCart
Abstract. We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c Ͼ 1 and given any n nodes in 2 , a randomized version of the scheme finds a (1 ϩ 1/c)approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. When the nodes
Polynomial time algorithms for multicast network code construction
 IEEE TRANS. ON INFO. THY
, 2005
"... The famous maxflow mincut theorem states that a source node can send information through a network ( ) to a sink node at a rate determined by the mincut separating and. Recently, it has been shown that this rate can also be achieved for multicasting to several sinks provided that the intermediat ..."
Abstract

Cited by 316 (29 self)
 Add to MetaCart
that the intermediate nodes are allowed to reencode the information they receive. We demonstrate examples of networks where the achievable rates obtained by coding at intermediate nodes are arbitrarily larger than if coding is not allowed. We give deterministic polynomial time algorithms and even faster randomized
A PolynomialTime Approximation Algorithm for the Permanent of a Matrix with NonNegative Entries
 JOURNAL OF THE ACM
, 2004
"... We present a polynomialtime randomized algorithm for estimating the permanent of an arbitrary n ×n matrix with nonnegative entries. This algorithm—technically a “fullypolynomial randomized approximation scheme”—computes an approximation that is, with high probability, within arbitrarily small spec ..."
Abstract

Cited by 427 (27 self)
 Add to MetaCart
We present a polynomialtime randomized algorithm for estimating the permanent of an arbitrary n ×n matrix with nonnegative entries. This algorithm—technically a “fullypolynomial randomized approximation scheme”—computes an approximation that is, with high probability, within arbitrarily small
ESP: PathSensitive Program Verification in Polynomial Time
, 2002
"... In this paper, we present a new algorithm for partial program verification that runs in polynomial time and space. We are interested in checking that a program satisfies a given temporal safety property. Our insight is that by accurately modeling only those branches in a program for which the proper ..."
Abstract

Cited by 298 (4 self)
 Add to MetaCart
In this paper, we present a new algorithm for partial program verification that runs in polynomial time and space. We are interested in checking that a program satisfies a given temporal safety property. Our insight is that by accurately modeling only those branches in a program for which
Nearoptimal reinforcement learning in polynomial time
 Machine Learning
, 1998
"... We present new algorithms for reinforcement learning, and prove that they have polynomial bounds on the resources required to achieve nearoptimal return in general Markov decision processes. After observing that the number of actions required to approach the optimal return is lower bounded by the m ..."
Abstract

Cited by 303 (5 self)
 Add to MetaCart
by the mixing time T of the optimal policy (in the undiscounted case) or by the horizon time T (in the discounted case), we then give algorithms requiring a number of actions and total computation time that are only polynomial in T and the number of states, for both the undiscounted and discounted cases
Factoring polynomials with rational coefficients
 MATH. ANN
, 1982
"... In this paper we present a polynomialtime algorithm to solve the following problem: given a nonzero polynomial fe Q[X] in one variable with rational coefficients, find the decomposition of f into irreducible factors in Q[X]. It is well known that this is equivalent to factoring primitive polynomia ..."
Abstract

Cited by 962 (11 self)
 Add to MetaCart
In this paper we present a polynomialtime algorithm to solve the following problem: given a nonzero polynomial fe Q[X] in one variable with rational coefficients, find the decomposition of f into irreducible factors in Q[X]. It is well known that this is equivalent to factoring primitive
Results 1  10
of
436,544