Results 1  10
of
849,181
Modular Las Vegas Algorithms for Polynomial Absolute Factorization
, 2010
"... Let f(X, Y) ∈ Z[X, Y] be an irreducible polynomial over Q. We give a Las Vegas absolute irreducibility test based on a property of the Newton polytope of f, or more precisely, of f modulo some prime integer p. The same idea of choosing a p satisfying some prescribed properties together with LLL is ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Let f(X, Y) ∈ Z[X, Y] be an irreducible polynomial over Q. We give a Las Vegas absolute irreducibility test based on a property of the Newton polytope of f, or more precisely, of f modulo some prime integer p. The same idea of choosing a p satisfying some prescribed properties together with LLL
Factoring polynomials with rational coefficients
 MATH. ANN
, 1982
"... In this paper we present a polynomialtime algorithm to solve the following problem: given a nonzero polynomial fe Q[X] in one variable with rational coefficients, find the decomposition of f into irreducible factors in Q[X]. It is well known that this is equivalent to factoring primitive polynomia ..."
Abstract

Cited by 961 (11 self)
 Add to MetaCart
In this paper we present a polynomialtime algorithm to solve the following problem: given a nonzero polynomial fe Q[X] in one variable with rational coefficients, find the decomposition of f into irreducible factors in Q[X]. It is well known that this is equivalent to factoring primitive
PolynomialTime Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
 SIAM J. on Computing
, 1997
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 1277 (4 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
A NEW POLYNOMIALTIME ALGORITHM FOR LINEAR PROGRAMMING
 COMBINATORICA
, 1984
"... We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than the ell ..."
Abstract

Cited by 860 (3 self)
 Add to MetaCart
We present a new polynomialtime algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a cost in computation time of at most a polynomial factol: It is not clear whether this is still true when quantum mechanics is taken into consider ..."
Abstract

Cited by 1111 (5 self)
 Add to MetaCart
of steps which is polynomial in the input size, e.g., the number of digits of the integer to be factored. These two problems are generally considered hard on a classical computer and have been used as the basis of several proposed cryptosystems. (We thus give the first examples of quantum cryptanulysis.)
Ideal spatial adaptation by wavelet shrinkage
 Biometrika
, 1994
"... With ideal spatial adaptation, an oracle furnishes information about how best to adapt a spatially variable estimator, whether piecewise constant, piecewise polynomial, variable knot spline, or variable bandwidth kernel, to the unknown function. Estimation with the aid of an oracle o ers dramatic ad ..."
Abstract

Cited by 1269 (5 self)
 Add to MetaCart
is the sample size. Moreover no estimator can give a better guarantee than this. Within the class of spatially adaptive procedures, RiskShrink is essentially optimal. Relying only on the data, it comes within a factor log 2 n of the performance of piecewise polynomial and variableknot spline methods equipped
Proof verification and hardness of approximation problems
 IN PROC. 33RD ANN. IEEE SYMP. ON FOUND. OF COMP. SCI
, 1992
"... We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probabilit ..."
Abstract

Cited by 797 (39 self)
 Add to MetaCart
in the proof (though this number is a very slowly growing function of the input length). As a consequence we prove that no MAX SNPhard problem has a polynomial time approximation scheme, unless NP=P. The class MAX SNP was defined by Papadimitriou and Yannakakis [82] and hard problems for this class include
Risk Aversion and Incentive Effects
 American Economic Review
, 2002
"... A menu of paired lottery choices is structured so that the crossover point to the highrisk lottery can be used to infer the degree of risk aversion. With "normal " laboratory payoffs of several dollars, most subjects are risk averse and few are risk loving. Scaling up all payoffs by facto ..."
Abstract

Cited by 488 (7 self)
 Add to MetaCart
by factors of twenty, fifty, and ninety makes little difference when the high payoffs are hypothetical. In contrast, subjects become sharply more risk averse when the high payoffs are actually paid in cash. A hybrid “power/expo ” utility function with increasing relative and decreasing absolute risk aversion
Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems
 Journal of the ACM
, 1998
"... Abstract. We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c Ͼ 1 and given any n nodes in 2 , a randomized version of the scheme finds a (1 ϩ 1/c)approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. When the nodes ..."
Abstract

Cited by 397 (2 self)
 Add to MetaCart
to Christofides) achieves a 3/2approximation in polynomial time. We also give similar approximation schemes for some other NPhard Euclidean problems: Minimum Steiner Tree, kTSP, and kMST. (The running times of the algorithm for kTSP and kMST involve an additional multiplicative factor k.) The previous best
The Ferric Reducing Ability of Plasma (FRAP) as a measure of antioxidant power: The FRAP assay.
 Anal. Biochem.,
, 1996
"... destroy potential oxidants, and to scavenge ROS. Thus, A simple, automated test measuring the ferric reducoxidative stressinduced tissue damage is minimized. ing ability of plasma, the FRAP assay, is presented as However, an absolute or relative deficiency of antioxia novel method for assessing & ..."
Abstract

Cited by 436 (0 self)
 Add to MetaCart
destroy potential oxidants, and to scavenge ROS. Thus, A simple, automated test measuring the ferric reducoxidative stressinduced tissue damage is minimized. ing ability of plasma, the FRAP assay, is presented as However, an absolute or relative deficiency of antioxia novel method for assessing
Results 1  10
of
849,181