Results 1  10
of
23,873
Optimal Planar Point Location
 IN PROCEEDINGS OF THE TWELFTH ANNUAL ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS
, 2001
"... Given a fixed distribution of point location queries among the regions of a triangulation of the plane, a data structure is presented that achieves, within constant multiplicative factors, the entropy bound on the expected point location query time. ..."
Abstract

Cited by 13 (2 self)
 Add to MetaCart
Given a fixed distribution of point location queries among the regions of a triangulation of the plane, a data structure is presented that achieves, within constant multiplicative factors, the entropy bound on the expected point location query time.
Planar Point Location Using Persistent Search Trees
, 1986
"... A classical problem in computational geometry is the planar point location problem. This problem calls for preprocessing a polygonal subdivision of the plane defined by n line segments so that, given a sequence of points, the polygon containing each point can be determined quickly online. Several ..."
Abstract

Cited by 177 (4 self)
 Add to MetaCart
A classical problem in computational geometry is the planar point location problem. This problem calls for preprocessing a polygonal subdivision of the plane defined by n line segments so that, given a sequence of points, the polygon containing each point can be determined quickly on
Extensible point location algorithm
 in GMAG, 2003
"... We present a general walkthrough point location algorithm for use with general polyhedron lattices and polygonal meshes assuming the usage of nothing more than a simple linked list as a data structure to store the polyhedra. The generality of the approach stems from using barycentric coordinate ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We present a general walkthrough point location algorithm for use with general polyhedron lattices and polygonal meshes assuming the usage of nothing more than a simple linked list as a data structure to store the polyhedra. The generality of the approach stems from using barycentric co
Point Location in an Arrangement
"... Consider the following special case of planar point location: preprocess k sets of lines, where each set consists of parallel lines, to support queries of the form “given a point p, what is the line immediately above or below p? ” What is the fastest possible query time as a function of k and the to ..."
Abstract
 Add to MetaCart
Consider the following special case of planar point location: preprocess k sets of lines, where each set consists of parallel lines, to support queries of the form “given a point p, what is the line immediately above or below p? ” What is the fastest possible query time as a function of k
THE POINT LOCATION PROBLEM IN CARTOGRAPHY
"... In this work, we focus on one of the most important problems in cartography applications, which is the point location (or polygon inclusion) problem. This problem is stated as follows: Assume that we have a polygon R and a query point P. We want to find out if the point P lies inside or outside the ..."
Abstract
 Add to MetaCart
In this work, we focus on one of the most important problems in cartography applications, which is the point location (or polygon inclusion) problem. This problem is stated as follows: Assume that we have a polygon R and a query point P. We want to find out if the point P lies inside or outside
PLANE GRAPHS AND POINT LOCATION
, 2003
"... Euler’s formula relating number of vertices, edges and faces of a plana embedding of graph is a fundamental relation in computational geometry. It leads to all the favorable computational properties of planar graphs, as compared to general graphs. We introduce the notion of skeletons and their compu ..."
Abstract
 Add to MetaCart
and their computation. In general, we need the language of cell complexes as in topology where skeletons might be called 1complexes. The problem of point location, Kirkpatrick’s elegant solution, and the alternative of Seidel is treated. §1. Plane Graphs and Skeletons Let G be a undirected graph G =(V,E). Let the map
An affine invariant interest point detector
 In Proceedings of the 7th European Conference on Computer Vision
, 2002
"... Abstract. This paper presents a novel approach for detecting affine invariant interest points. Our method can deal with significant affine transformations including large scale changes. Such transformations introduce significant changes in the point location as well as in the scale and the shape of ..."
Abstract

Cited by 1467 (55 self)
 Add to MetaCart
Abstract. This paper presents a novel approach for detecting affine invariant interest points. Our method can deal with significant affine transformations including large scale changes. Such transformations introduce significant changes in the point location as well as in the scale and the shape
Dynamic Trees and Dynamic Point Location
 In Proc. 23rd Annu. ACM Sympos. Theory Comput
, 1991
"... This paper describes new methods for maintaining a pointlocation data structure for a dynamicallychanging monotone subdivision S. The main approach is based on the maintenance of two interlaced spanning trees, one for S and one for the graphtheoretic planar dual of S. Queries are answered by using ..."
Abstract

Cited by 45 (9 self)
 Add to MetaCart
This paper describes new methods for maintaining a pointlocation data structure for a dynamicallychanging monotone subdivision S. The main approach is based on the maintenance of two interlaced spanning trees, one for S and one for the graphtheoretic planar dual of S. Queries are answered
Proximate point location
 In Proceedings the 2003 ACM Symposium on Computational Geometry (SoCG 2003
, 2003
"... The following is a list of the problems presented on ..."
Results 1  10
of
23,873