Results 1  10
of
194,817
A Separator Theorem for Planar Graphs
, 1977
"... Let G be any nvertex planar graph. We prove that the vertices of G can be partitioned into three sets A, B, C such that no edge joins a vertex in A with a vertex in B, neither A nor B contains more than 2n/3 vertices, and C contains no more than 2& & vertices. We exhibit an algorithm which ..."
Abstract

Cited by 465 (1 self)
 Add to MetaCart
Let G be any nvertex planar graph. We prove that the vertices of G can be partitioned into three sets A, B, C such that no edge joins a vertex in A with a vertex in B, neither A nor B contains more than 2n/3 vertices, and C contains no more than 2& & vertices. We exhibit an algorithm which
Where the REALLY Hard Problems Are
 IN J. MYLOPOULOS AND R. REITER (EDS.), PROCEEDINGS OF 12TH INTERNATIONAL JOINT CONFERENCE ON AI (IJCAI91),VOLUME 1
, 1991
"... It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard p ..."
Abstract

Cited by 681 (1 self)
 Add to MetaCart
It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard
Using genetic algorithms for planarization problems
 Computational and Applied Mathematics I, Eds. C. Brezinski and U. Kulish, Elsevier Science Publishers B.V. (North Holland
, 1992
"... Abstract − Two nearoptimum planarization algorithms are presented. The algorithms belong to a general class of algorithms known as genetic algorithms because the search procedures on which they are based are inspired on the mechanics of natural selection and natural genetics. The first algorithm is ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Abstract − Two nearoptimum planarization algorithms are presented. The algorithms belong to a general class of algorithms known as genetic algorithms because the search procedures on which they are based are inspired on the mechanics of natural selection and natural genetics. The first algorithm
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds
A Framework for Dynamic Graph Drawing
 CONGRESSUS NUMERANTIUM
, 1992
"... Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows ..."
Abstract

Cited by 627 (44 self)
 Add to MetaCart
Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized
On Descriptional Complexity of the Planarity Problem for Gauss Words
, 907
"... Abstract. In this paper we investigate the descriptional complexity of knot theoretic problems and show upper bounds for planarity problem of signed and unsigned knot diagrams represented by Gauss words. Since a topological equivalence of knots can involve knot diagrams with arbitrarily many crossin ..."
Abstract
 Add to MetaCart
Abstract. In this paper we investigate the descriptional complexity of knot theoretic problems and show upper bounds for planarity problem of signed and unsigned knot diagrams represented by Gauss words. Since a topological equivalence of knots can involve knot diagrams with arbitrarily many
Routing with Guaranteed Delivery in ad hoc Wireless Networks
, 2001
"... We consider routing problems in ad hoc wireless networks modeled as unit graphs in which nodes are points in the plane and two nodes can communicate if the distance between them is less than some fixed unit. We describe the first distributed algorithms for routing that do not require duplication of ..."
Abstract

Cited by 856 (87 self)
 Add to MetaCart
We consider routing problems in ad hoc wireless networks modeled as unit graphs in which nodes are points in the plane and two nodes can communicate if the distance between them is less than some fixed unit. We describe the first distributed algorithms for routing that do not require duplication
Plenoptic Modeling: An ImageBased Rendering System
, 1995
"... Imagebased rendering is a powerful new approach for generating realtime photorealistic computer graphics. It can provide convincing animations without an explicit geometric representation. We use the “plenoptic function” of Adelson and Bergen to provide a concise problem statement for imagebased ..."
Abstract

Cited by 770 (23 self)
 Add to MetaCart
Imagebased rendering is a powerful new approach for generating realtime photorealistic computer graphics. It can provide convincing animations without an explicit geometric representation. We use the “plenoptic function” of Adelson and Bergen to provide a concise problem statement for image
Results 1  10
of
194,817