Results 1  10
of
6,762
A Fast Marching Level Set Method for Monotonically Advancing Fronts
 PROC. NAT. ACAD. SCI
, 1995
"... We present a fast marching level set method for monotonically advancing fronts, which leads to an extremely fast scheme for solving the Eikonal equation. Level set methods are numerical techniques for computing the position of propagating fronts. They rely on an initial value partial differential eq ..."
Abstract

Cited by 630 (24 self)
 Add to MetaCart
We present a fast marching level set method for monotonically advancing fronts, which leads to an extremely fast scheme for solving the Eikonal equation. Level set methods are numerical techniques for computing the position of propagating fronts. They rely on an initial value partial differential
The Extended Linear Complementarity Problem
, 1993
"... We consider an extension of the horizontal linear complementarity problem, which we call the extended linear complementarity problem (XLCP). With the aid of a natural bilinear program, we establish various properties of this extended complementarity problem; these include the convexity of the biline ..."
Abstract

Cited by 788 (30 self)
 Add to MetaCart
of the bilinear objective function under a monotonicity assumption, the polyhedrality of the solution set of a monotone XLCP, and an error bound result for a nondegenerate XLCP. We also present a finite, sequential linear programming algorithm for solving the nonmonotone XLCP.
Interiorpoint Methods
, 2000
"... The modern era of interiorpoint methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex quadrati ..."
Abstract

Cited by 612 (15 self)
 Add to MetaCart
, monotone linear complementarity, and convex programming over sets that can be characterized by selfconcordant barrier functions.
Algorithms for Nonnegative Matrix Factorization
 In NIPS
, 2001
"... Nonnegative matrix factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. Two different multiplicative algorithms for NMF are analyzed. They differ only slightly in the multiplicative factor used in the update rules. One algorithm can be shown to minim ..."
Abstract

Cited by 1246 (5 self)
 Add to MetaCart
to minimize the conventional least squares error while the other minimizes the generalized KullbackLeibler divergence. The monotonic convergence of both algorithms can be proven using an auxiliary function analogous to that used for proving convergence of the ExpectationMaximization algorithm
Optimal Aggregation Algorithms for Middleware
 IN PODS
, 2001
"... Assume that each object in a database has m grades, or scores, one for each of m attributes. For example, an object can have a color grade, that tells how red it is, and a shape grade, that tells how round it is. For each attribute, there is a sorted list, which lists each object and its grade under ..."
Abstract

Cited by 717 (4 self)
 Add to MetaCart
under that attribute, sorted by grade (highest grade first). There is some monotone aggregation function, or combining rule, such as min or average, that combines the individual grades to obtain an overall grade. To determine the top k objects (that have the best overall grades), the naive algorithm
SIGNAL RECOVERY BY PROXIMAL FORWARDBACKWARD SPLITTING
 MULTISCALE MODEL. SIMUL. TO APPEAR
"... We show that various inverse problems in signal recovery can be formulated as the generic problem of minimizing the sum of two convex functions with certain regularity properties. This formulation makes it possible to derive existence, uniqueness, characterization, and stability results in a unifi ..."
Abstract

Cited by 509 (24 self)
 Add to MetaCart
We show that various inverse problems in signal recovery can be formulated as the generic problem of minimizing the sum of two convex functions with certain regularity properties. This formulation makes it possible to derive existence, uniqueness, characterization, and stability results in a
Excitatory and inhibitory interactions in localized populations of model
 Biophysics
, 1972
"... ABSMAcr Coupled nonlinear differential equations are derived for the dynamics of spatially localized populations containing both excitatory and inhibitory model neurons. Phase plane methods and numerical solutions are then used to investigate population responses to various types of stimuli. The res ..."
Abstract

Cited by 495 (11 self)
 Add to MetaCart
. The results obtained show simple and multiple hysteresis phenomena and limit cycle activity. The latter is particularly interesting since the frequency ofthe limit cycle oscillationis found to be a monotonic function of stimulus intensity. Finally, it is proved that the existence of limit cycle dynamics
Motivation through the Design of Work: Test of a Theory. Organizational Behavior and Human Performance,
, 1976
"... A model is proposed that specifies the conditions under which individuals will become internally motivated to perform effectively on their jobs. The model focuses on the interaction among three classes of variables: (a) the psychological states of employees that must be present for internally motiv ..."
Abstract

Cited by 622 (2 self)
 Add to MetaCart
with ambiguities regarding the processes by which individuals adapt to changing levels in stimulation. Individuals' levels of activation decrease markedly as a function of familiarity with a given stimulus situation. However, after a period of rest, representation of the same stimulus situation will once
/7 8LVk U Dun1ue A GOODNESSOFFIT TEST BASED ON SPACINGS
"... The difference between consecutive order statistics from a sample is called a spacing. Various tests based on sample spacings have been considered in the literature for testing the hypothesis that the sample is drawn from a specified distribution. Tests based on the spacings are recommended for u ..."
Abstract
 Add to MetaCart
for use when the alternative distribution differs from the hypothetical distribution in the shape of the density function. In this paper, we consider a test based on the spacings designed for the case when the ratio of the two density functions is a Acce. piecewise monotone function. This paper deals
Finding Long and Similar Parts of Trajectories
, 2011
"... A natural timedependent similarity measure for two trajectories is their average distance at corresponding times. We give algorithms for computing the most similar subtrajectories under this measure, assuming the two trajectories are given as two polygonal, possibly selfintersecting lines with tim ..."
Abstract

Cited by 11 (4 self)
 Add to MetaCart
with time stamps. For the case when a minimum duration of the subtrajectories is specified and the subtrajectories must start at corresponding times, we give a lineartime algorithm. The algorithm is based on a result of independent interest: We present a lineartime algorithm to find, for a piecewise
Results 1  10
of
6,762