Results 1  10
of
145,664
The Hungarian method for the assignment problem
 Naval Res. Logist. Quart
, 1955
"... Assuming that numerical scores are available for the performance of each of n persons on each of n jobs, the "assignment problem" is the quest for an assignment of persons to jobs so that the sum of the n scores so obtained is as large as possible. It is shown that ideas latent in the work ..."
Abstract

Cited by 1259 (0 self)
 Add to MetaCart
Assuming that numerical scores are available for the performance of each of n persons on each of n jobs, the "assignment problem" is the quest for an assignment of persons to jobs so that the sum of the n scores so obtained is as large as possible. It is shown that ideas latent
Molecular Computation Of Solutions To Combinatorial Problems
, 1994
"... The tools of molecular biology are used to solve an instance of the directed Hamiltonian path problem. A small graph is encoded in molecules of DNA and the `operations' of the computation are performed with standard protocols and enzymes. This experiment demonstrates the feasibility of carrying ..."
Abstract

Cited by 773 (6 self)
 Add to MetaCart
The tools of molecular biology are used to solve an instance of the directed Hamiltonian path problem. A small graph is encoded in molecules of DNA and the `operations' of the computation are performed with standard protocols and enzymes. This experiment demonstrates the feasibility
Analysis of TCP Performance over Mobile Ad Hoc Networks Part I: Problem Discussion and Analysis of Results
, 1999
"... Mobile ad hoc networks have gained a lot of attention lately as a means of providing continuous network connectivity to mobile computing devices regardless of physical location. Recently, a large amount of research has focused on the routing protocols needed in such an environment. In this twopart ..."
Abstract

Cited by 521 (5 self)
 Add to MetaCart
improve TCP performance. In this paper (Part I of the report), we present the problem and an analysis of our simulation results. In Part II of this report, we present the simulation and results in detail.
A Compositional Approach to Performance Modelling
, 1996
"... Performance modelling is concerned with the capture and analysis of the dynamic behaviour of computer and communication systems. The size and complexity of many modern systems result in large, complex models. A compositional approach decomposes the system into subsystems that are smaller and more ea ..."
Abstract

Cited by 757 (102 self)
 Add to MetaCart
as model construction. An operational semantics is provided for PEPA and its use to generate an underlying Markov process for any PEPA model is explained and demonstrated. Model simplification and state space aggregation have been proposed as means to tackle the problems of large performance models
A New Method for Solving Hard Satisfiability Problems
 AAAI
, 1992
"... We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approac ..."
Abstract

Cited by 730 (21 self)
 Add to MetaCart
discussed. GSAT is best viewed as a modelfinding procedure. Its good performance suggests that it may be advantageous to reformulate reasoning tasks that have traditionally been viewed as theoremproving problems as modelfinding tasks.
Nonlinear component analysis as a kernel eigenvalue problem

, 1996
"... We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all ..."
Abstract

Cited by 1573 (83 self)
 Add to MetaCart
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all
Theoretical improvements in algorithmic efficiency for network flow problems

, 1972
"... This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimumcost flow problem. Upper bounds on ... the numbers of steps in these algorithms are derived, and are shown to compale favorably with upper bounds on the numbers of steps req ..."
Abstract

Cited by 560 (0 self)
 Add to MetaCart
problem, in which all shortestpath computations are performed on networks with all weights nonnegative. In particular, this
Mining Sequential Patterns: Generalizations and Performance Improvements
 RESEARCH REPORT RJ 9994, IBM ALMADEN RESEARCH
, 1995
"... The problem of mining sequential patterns was recently introduced in [3]. We are given a database of sequences, where each sequence is a list of transactions ordered by transactiontime, and each transaction is a set of items. The problem is to discover all sequential patterns with a userspecified ..."
Abstract

Cited by 759 (5 self)
 Add to MetaCart
The problem of mining sequential patterns was recently introduced in [3]. We are given a database of sequences, where each sequence is a list of transactions ordered by transactiontime, and each transaction is a set of items. The problem is to discover all sequential patterns with a user
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1211 (13 self)
 Add to MetaCart
the solution to a nonlinear programming relaxation. This relaxation can be interpreted both as a semidefinite program and as an eigenvalue minimization problem. The best previously known approximation algorithms for these problems had performance guarantees of ...
Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING
, 2007
"... Many problems in signal processing and statistical inference involve finding sparse solutions to underdetermined, or illconditioned, linear systems of equations. A standard approach consists in minimizing an objective function which includes a quadratic (squared ℓ2) error term combined with a spa ..."
Abstract

Cited by 539 (17 self)
 Add to MetaCart
constrained quadratic programming (BCQP) formulation of these problems. We test variants of this approach that select the line search parameters in different ways, including techniques based on the BarzilaiBorwein method. Computational experiments show that these GP approaches perform well in a wide range
Results 1  10
of
145,664