• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 27,561
Next 10 →

The particel swarm: Explosion, stability, and convergence in a multi-dimensional complex space

by Maurice Clerc, James Kennedy - IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTION
"... The particle swarm is an algorithm for finding optimal regions of complex search spaces through interaction of individuals in a population of particles. Though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately explained ..."
Abstract - Cited by 852 (10 self) - Add to MetaCart
’s convergence tendencies. Some results of the particle swarm optimizer, implementing modifications derived from the analysis, suggest methods for altering the original algorithm in ways that eliminate problems and increase the optimization power of the particle swarm

Regularization paths for generalized linear models via coordinate descent

by Jerome Friedman, Trevor Hastie, Rob Tibshirani , 2009
"... We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, twoclass logistic regression, and multinomial regression problems while the penalties include ℓ1 (the lasso), ℓ2 (ridge regression) and mixtures of the two (the elastic ..."
Abstract - Cited by 724 (15 self) - Add to MetaCart
elastic net). The algorithms use cyclical coordinate descent, computed along a regularization path. The methods can handle large problems and can also deal efficiently with sparse features. In comparative timings we find that the new algorithms are considerably faster than competing methods.

Molecular Computation Of Solutions To Combinatorial Problems

by Leonard M. Adleman , 1994
"... The tools of molecular biology are used to solve an instance of the directed Hamiltonian path problem. A small graph is encoded in molecules of DNA and the `operations' of the computation are performed with standard protocols and enzymes. This experiment demonstrates the feasibility of carrying ..."
Abstract - Cited by 773 (6 self) - Add to MetaCart
The tools of molecular biology are used to solve an instance of the directed Hamiltonian path problem. A small graph is encoded in molecules of DNA and the `operations' of the computation are performed with standard protocols and enzymes. This experiment demonstrates the feasibility

Theoretical improvements in algorithmic efficiency for network flow problems

by Jack Edmonds, Richard M. Karp - , 1972
"... This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimum-cost flow problem. Upper bounds on ... the numbers of steps in these algorithms are derived, and are shown to compale favorably with upper bounds on the numbers of steps req ..."
Abstract - Cited by 560 (0 self) - Add to MetaCart
required by earlier algorithms. First, the paper states the maximum flow problem, gives the Ford-Fulkerson labeling method for its solution, and points out that an improper choice of flow augmenting paths can lead to severe computational difficulties. Then rules of choice that avoid these difficulties

A new approach to the maximum flow problem

by Andrew V. Goldberg, Robert E. Tarjan - JOURNAL OF THE ACM , 1988
"... All previously known efficient maximum-flow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortest-length augmenting paths at once (using the layered network approach of Dinic). An alternative method based on the pre ..."
Abstract - Cited by 672 (33 self) - Add to MetaCart
All previously known efficient maximum-flow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortest-length augmenting paths at once (using the layered network approach of Dinic). An alternative method based

FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem

by Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Wegbreit - In Proceedings of the AAAI National Conference on Artificial Intelligence , 2002
"... The ability to simultaneously localize a robot and accurately map its surroundings is considered by many to be a key prerequisite of truly autonomous robots. However, few approaches to this problem scale up to handle the very large number of landmarks present in real environments. Kalman filter-base ..."
Abstract - Cited by 599 (10 self) - Add to MetaCart
The ability to simultaneously localize a robot and accurately map its surroundings is considered by many to be a key prerequisite of truly autonomous robots. However, few approaches to this problem scale up to handle the very large number of landmarks present in real environments. Kalman filter

Alternating-time Temporal Logic

by Rajeev Alur, Thomas Henzinger, Orna Kupferman - Journal of the ACM , 1997
"... Temporal logic comes in two varieties: linear-time temporal logic assumes implicit universal quantification over all paths that are generated by system moves; branching-time temporal logic allows explicit existential and universal quantification over all paths. We introduce a third, more general var ..."
Abstract - Cited by 620 (53 self) - Add to MetaCart
Temporal logic comes in two varieties: linear-time temporal logic assumes implicit universal quantification over all paths that are generated by system moves; branching-time temporal logic allows explicit existential and universal quantification over all paths. We introduce a third, more general

Randomized kinodynamic planning

by Steven M. Lavalle, James J. Kuffner, Jr. - THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH 2001; 20; 378 , 2001
"... This paper presents the first randomized approach to kinodynamic planning (also known as trajectory planning or trajectory design). The task is to determine control inputs to drive a robot from an initial configuration and velocity to a goal configuration and velocity while obeying physically based ..."
Abstract - Cited by 626 (35 self) - Add to MetaCart
dynamical models and avoiding obstacles in the robot’s environment. The authors consider generic systems that express the nonlinear dynamics of a robot in terms of the robot’s high-dimensional configuration space. Kinodynamic planning is treated as a motion-planning problem in a higher dimensional state

Routing in a Delay Tolerant Network

by Sushant Jain, Kevin Fall, Rabin Patra , 2004
"... We formulate the delay-tolerant networking routing problem, where messages are to be moved end-to-end across a connectivity graph that is time-varying but whose dynamics may be known in advance. The problem has the added constraints of finite buffers at each node and the general property that no con ..."
Abstract - Cited by 621 (8 self) - Add to MetaCart
We formulate the delay-tolerant networking routing problem, where messages are to be moved end-to-end across a connectivity graph that is time-varying but whose dynamics may be known in advance. The problem has the added constraints of finite buffers at each node and the general property

Fibonacci Heaps and Their Uses in Improved Network optimization algorithms

by Michael L. Fredman, Robert Endre Tarjan , 1987
"... In this paper we develop a new data structure for implementing heaps (priority queues). Our structure, Fibonacci heaps (abbreviated F-heaps), extends the binomial queues proposed by Vuillemin and studied further by Brown. F-heaps support arbitrary deletion from an n-item heap in qlogn) amortized tim ..."
Abstract - Cited by 739 (18 self) - Add to MetaCart
in the problem graph: ( 1) O(n log n + m) for the single-source shortest path problem with nonnegative edge lengths, improved from O(m logfmh+2)n); (2) O(n*log n + nm) for the all-pairs shortest path problem, improved from O(nm lo&,,,+2,n); (3) O(n*logn + nm) for the assignment problem (weighted bipartite
Next 10 →
Results 1 - 10 of 27,561
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University