Results 1  10
of
4,055,133
Some particular points in projectile motion
, 2012
"... This paper discusses some points about projectile motion. The usual assumption of neglecting air resistance is considered. We have obtained the equation of the path, range, the maximum height and the curvature of projectile motion in an especial way. We also found a particular point on the trajector ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
This paper discusses some points about projectile motion. The usual assumption of neglecting air resistance is considered. We have obtained the equation of the path, range, the maximum height and the curvature of projectile motion in an especial way. We also found a particular point
Spacetime Interest Points
 IN ICCV
, 2003
"... Local image features or interest points provide compact and abstract representations of patterns in an image. In this paper, we propose to extend the notion of spatial interest points into the spatiotemporal domain and show how the resulting features often reflect interesting events that can be use ..."
Abstract

Cited by 791 (22 self)
 Add to MetaCart
Local image features or interest points provide compact and abstract representations of patterns in an image. In this paper, we propose to extend the notion of spatial interest points into the spatiotemporal domain and show how the resulting features often reflect interesting events that can
QSplat: A Multiresolution Point Rendering System for Large Meshes
, 2000
"... Advances in 3D scanning technologies have enabled the practical creation of meshes with hundreds of millions of polygons. Traditional algorithms for display, simplification, and progressive transmission of meshes are impractical for data sets of this size. We describe a system for representing and p ..."
Abstract

Cited by 500 (8 self)
 Add to MetaCart
and progressively displaying these meshes that combines a multiresolution hierarchy based on bounding spheres with a rendering system based on points. A single data structure is used for view frustum culling, backface culling, levelofdetail selection, and rendering. The representation is compact and can
Iterative point matching for registration of freeform curves and surfaces
, 1994
"... A heuristic method has been developed for registering two sets of 3D curves obtained by using an edgebased stereo system, or two dense 3D maps obtained by using a correlationbased stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately, in ma ..."
Abstract

Cited by 659 (7 self)
 Add to MetaCart
, which is required for environment modeling (e.g., building a Digital Elevation Map). Objects are represented by a set of 3D points, which are considered as the samples of a surface. No constraint is imposed on the form of the objects. The proposed algorithm is based on iteratively matching points
Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization
 SIAM Journal on Optimization
, 1993
"... We study the semidefinite programming problem (SDP), i.e the problem of optimization of a linear function of a symmetric matrix subject to linear equality constraints and the additional condition that the matrix be positive semidefinite. First we review the classical cone duality as specialized to S ..."
Abstract

Cited by 557 (12 self)
 Add to MetaCart
to SDP. Next we present an interior point algorithm which converges to the optimal solution in polynomial time. The approach is a direct extension of Ye's projective method for linear programming. We also argue that most known interior point methods for linear programs can be transformed in a
A Critical Point For Random Graphs With A Given Degree Sequence
, 2000
"... Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0 the ..."
Abstract

Cited by 511 (8 self)
 Add to MetaCart
Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0 then almost surely all components in such graphs are small. We can apply these results to G n;p ; G n;M , and other wellknown models of random graphs. There are also applications related to the chromatic number of sparse random graphs.
Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality
, 1998
"... The nearest neighbor problem is the following: Given a set of n points P = fp 1 ; : : : ; png in some metric space X, preprocess P so as to efficiently answer queries which require finding the point in P closest to a query point q 2 X. We focus on the particularly interesting case of the ddimens ..."
Abstract

Cited by 1017 (40 self)
 Add to MetaCart
The nearest neighbor problem is the following: Given a set of n points P = fp 1 ; : : : ; png in some metric space X, preprocess P so as to efficiently answer queries which require finding the point in P closest to a query point q 2 X. We focus on the particularly interesting case of the d
Surface deformation due to shear and tensile faults in a halfspace
, 1985
"... A complete set of closed analytical expressions is presented in a unified manner for the internal displacements and strains due to shear and tensile faults in a halfspace for both point and finite rectangular sources. These expressions are particularly compact and systematically composed of terms r ..."
Abstract

Cited by 698 (1 self)
 Add to MetaCart
A complete set of closed analytical expressions is presented in a unified manner for the internal displacements and strains due to shear and tensile faults in a halfspace for both point and finite rectangular sources. These expressions are particularly compact and systematically composed of terms
Results 1  10
of
4,055,133