Results 1  10
of
6,994
Finding the k Shortest Paths
, 1997
"... We give algorithms for finding the k shortest paths (not required to be simple) connecting a pair of vertices in a digraph. Our algorithms output an implicit representation of these paths in a digraph with n vertices and m edges, in time O(m + n log n + k). We can also find the k shortest pat ..."
Abstract

Cited by 401 (2 self)
 Add to MetaCart
We give algorithms for finding the k shortest paths (not required to be simple) connecting a pair of vertices in a digraph. Our algorithms output an implicit representation of these paths in a digraph with n vertices and m edges, in time O(m + n log n + k). We can also find the k shortest
A new approach to the maximum flow problem
 JOURNAL OF THE ACM
, 1988
"... All previously known efficient maximumflow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortestlength augmenting paths at once (using the layered network approach of Dinic). An alternative method based on the pre ..."
Abstract

Cited by 672 (33 self)
 Add to MetaCart
All previously known efficient maximumflow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortestlength augmenting paths at once (using the layered network approach of Dinic). An alternative method based
Theoretical improvements in algorithmic efficiency for network flow problems

, 1972
"... This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimumcost flow problem. Upper bounds on ... the numbers of steps in these algorithms are derived, and are shown to compale favorably with upper bounds on the numbers of steps req ..."
Abstract

Cited by 560 (0 self)
 Add to MetaCart
problem, in which all shortestpath computations are performed on networks with all weights nonnegative. In particular, this
Fibonacci Heaps and Their Uses in Improved Network optimization algorithms
, 1987
"... In this paper we develop a new data structure for implementing heaps (priority queues). Our structure, Fibonacci heaps (abbreviated Fheaps), extends the binomial queues proposed by Vuillemin and studied further by Brown. Fheaps support arbitrary deletion from an nitem heap in qlogn) amortized tim ..."
Abstract

Cited by 739 (18 self)
 Add to MetaCart
in the problem graph: ( 1) O(n log n + m) for the singlesource shortest path problem with nonnegative edge lengths, improved from O(m logfmh+2)n); (2) O(n*log n + nm) for the allpairs shortest path problem, improved from O(nm lo&,,,+2,n); (3) O(n*logn + nm) for the assignment problem (weighted bipartite
GPSR: Greedy perimeter stateless routing for wireless networks
 MOBICOM
, 2000
"... We present Greedy Perimeter Stateless Routing (GPSR), a novel routing protocol for wireless datagram networks that uses the positions of touters and a packer's destination to make packet forwarding decisions. GPSR makes greedy forwarding decisions using only information about a router's i ..."
Abstract

Cited by 2290 (8 self)
 Add to MetaCart
's immediate neighbors in the network topology. When a packet reaches a region where greedy forwarding is impossible, the algorithm recovers by routing around the perimeter of the region. By keeping state only about the local topology, GPSR scales better in perrouter state than shortestpath and ad
Internet traffic engineering by optimizing OSPF weights
 in Proc. IEEE INFOCOM
, 2000
"... Abstractâ€”Open Shortest Path First (OSPF) is the most commonly used intradomain internet routing protocol. Traffic flow is routed along shortest paths, splitting flow at nodes where several outgoing links are on shortest paths to the destination. The weights of the links, and thereby the shortest pa ..."
Abstract

Cited by 403 (13 self)
 Add to MetaCart
Abstractâ€”Open Shortest Path First (OSPF) is the most commonly used intradomain internet routing protocol. Traffic flow is routed along shortest paths, splitting flow at nodes where several outgoing links are on shortest paths to the destination. The weights of the links, and thereby the shortest
A general approximation technique for constrained forest problems
 SIAM J. COMPUT.
, 1995
"... We present a general approximation technique for a large class of graph problems. Our technique mostly applies to problems of covering, at minimum cost, the vertices of a graph with trees, cycles, or paths satisfying certain requirements. In particular, many basic combinatorial optimization proble ..."
Abstract

Cited by 414 (21 self)
 Add to MetaCart
problems fit in this framework, including the shortest path, minimumcost spanning tree, minimumweight perfect matching, traveling salesman, and Steiner tree problems. Our technique produces approximation algorithms that run in O(n log n) time and come within a factor of 2 of optimal for most
Computing Geodesic Paths on Manifolds
 Proc. Natl. Acad. Sci. USA
, 1998
"... The Fast Marching Method [8] is a numerical algorithm for solving the Eikonal equation on a rectangular orthogonal mesh in O(M log M) steps, where M is the total number of grid points. In this paper we extend the Fast Marching Method to triangulated domains with the same computational complexity. A ..."
Abstract

Cited by 294 (28 self)
 Add to MetaCart
. As an application, we provide an optimal time algorithm for computing the geodesic distances and thereby extracting shortest paths on triangulated manifolds. 1 Introduction Sethian`s Fast Marching Method [8], is a numerical algorithm for solving the Eikonal equation on a rectangular orthogonal mesh in O(M log M
Geometric Shortest Paths and Network Optimization
 Handbook of Computational Geometry
, 1998
"... Introduction A natural and wellstudied problem in algorithmic graph theory and network optimization is that of computing a "shortest path" between two nodes, s and t, in a graph whose edges have "weights" associated with them, and we consider the "length" of a path to ..."
Abstract

Cited by 187 (15 self)
 Add to MetaCart
Introduction A natural and wellstudied problem in algorithmic graph theory and network optimization is that of computing a "shortest path" between two nodes, s and t, in a graph whose edges have "weights" associated with them, and we consider the "length" of a path
Faster ShortestPath Algorithms for Planar Graphs
 STOC 94
, 1994
"... We give a lineartime algorithm for singlesource shortest paths in planar graphs with nonnegative edgelengths. Our algorithm also yields a lineartime algorithm for maximum flow in a planar graph with the source and sink on the same face. The previous best algorithms for these problems required\O ..."
Abstract

Cited by 200 (15 self)
 Add to MetaCart
We give a lineartime algorithm for singlesource shortest paths in planar graphs with nonnegative edgelengths. Our algorithm also yields a lineartime algorithm for maximum flow in a planar graph with the source and sink on the same face. The previous best algorithms for these problems required
Results 1  10
of
6,994