Results 1  10
of
1,108,024
The nas parallel benchmarks
 The International Journal of Supercomputer Applications
, 1991
"... A new set of benchmarks has been developed for the performance evaluation of highly parallel supercomputers. These benchmarks consist of ve \parallel kernel " benchmarks and three \simulated application" benchmarks. Together they mimic the computation and data movement characterist ..."
Abstract

Cited by 686 (10 self)
 Add to MetaCart
A new set of benchmarks has been developed for the performance evaluation of highly parallel supercomputers. These benchmarks consist of ve \parallel kernel " benchmarks and three \simulated application" benchmarks. Together they mimic the computation and data movement
Fast Parallel Algorithms for ShortRange Molecular Dynamics
 JOURNAL OF COMPUTATIONAL PHYSICS
, 1995
"... Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dyn ..."
Abstract

Cited by 622 (6 self)
 Add to MetaCart
Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular
Simultaneous Multithreading: Maximizing OnChip Parallelism
, 1995
"... This paper examines simultaneous multithreading, a technique permitting several independent threads to issue instructions to a superscalar’s multiple functional units in a single cycle. We present several models of simultaneous multithreading and compare them with alternative organizations: a wide s ..."
Abstract

Cited by 802 (48 self)
 Add to MetaCart
This paper examines simultaneous multithreading, a technique permitting several independent threads to issue instructions to a superscalar’s multiple functional units in a single cycle. We present several models of simultaneous multithreading and compare them with alternative organizations: a wide superscalar, a finegrain multithreaded processor, and singlechip, multipleissue multiprocessing architectures. Our results show that both (singlethreaded) superscalar and finegrain multithreaded architectures are limited in their ability to utilize the resources of a wideissue processor. Simultaneous multithreading has the potential to achieve 4 times the throughput of a superscalar, and double that of finegrain multithreading. We evaluate several cache configurations made possible by this type of organization and evaluate tradeoffs between them. We also show that simultaneous multithreading is an attractive alternative to singlechip multiprocessors; simultaneous multithreaded processors with a variety of organizations outperform corresponding conventional multiprocessors with similar execution resources. While simultaneous multithreading has excellent potential to increase processor utilization, it can add substantial complexity to the design. We examine many of these complexities and evaluate alternative organizations in the design space.
Parallel database systems: the future of high performance database systems
 Communications of the ACM
, 1992
"... Abstract: Parallel database machine architectures have evolved from the use of exotic hardware to a software parallel dataflow architecture based on conventional sharednothing hardware. These new designs provide impressive speedup and scaleup when processing relational database queries. This paper ..."
Abstract

Cited by 638 (13 self)
 Add to MetaCart
Abstract: Parallel database machine architectures have evolved from the use of exotic hardware to a software parallel dataflow architecture based on conventional sharednothing hardware. These new designs provide impressive speedup and scaleup when processing relational database queries. This paper
LogP: Towards a Realistic Model of Parallel Computation
, 1993
"... A vast body of theoretical research has focused either on overly simplistic models of parallel computation, notably the PRAM, or overly specific models that have few representatives in the real world. Both kinds of models encourage exploitation of formal loopholes, rather than rewarding developme ..."
Abstract

Cited by 562 (15 self)
 Add to MetaCart
A vast body of theoretical research has focused either on overly simplistic models of parallel computation, notably the PRAM, or overly specific models that have few representatives in the real world. Both kinds of models encourage exploitation of formal loopholes, rather than rewarding
UNet: A UserLevel Network Interface for Parallel and Distributed Computing
 In Fifteenth ACM Symposium on Operating System Principles
, 1995
"... The UNet communication architecture provides processes with a virtual view of a network interface to enable userlevel access to highspeed communication devices. The architecture, implemented on standard workstations using offtheshelf ATM communication hardware, removes the kernel from the communi ..."
Abstract

Cited by 596 (17 self)
 Add to MetaCart
The UNet communication architecture provides processes with a virtual view of a network interface to enable userlevel access to highspeed communication devices. The architecture, implemented on standard workstations using offtheshelf ATM communication hardware, removes the kernel from the communication path, while still providing full protection. The model presented by UNet allows for the construction of protocols at user level whose performance is only limited by the capabilities of network. The architecture is extremely flexible in the sense that traditional protocols like TCP and UDP, as well as novel abstractions like Active Messages can be implemented efficiently. A UNet prototype on an 8node ATM cluster of standard workstations offers 65 microseconds roundtrip latency and 15 Mbytes/sec bandwidth. It achieves TCP performance at maximum network bandwidth and demonstrates performance equivalent to Meiko CS2 and TMC CM5 supercomputers on a set of SplitC benchmarks. 1
Parallel Solution of Recurrence Problems
 IBM J. Res. Develop
, 1974
"... Abstract:. An mthorder recurrence problem is defined as the computation of the sequence x,;.., xN, where xi =f(ai, xi,;. and ai,is some vector of parameters. This paper investigates general algorithms for solving such problems on highly parallel computers. We show that if the recurrence functionfh ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
Abstract:. An mthorder recurrence problem is defined as the computation of the sequence x,;.., xN, where xi =f(ai, xi,;. and ai,is some vector of parameters. This paper investigates general algorithms for solving such problems on highly parallel computers. We show that if the recurrence
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 560 (10 self)
 Add to MetaCart
that for large n, and for all Φ’s except a negligible fraction, the following property holds: For every y having a representation y = Φα0 by a coefficient vector α0 ∈ R m with fewer than ρ · n nonzeros, the solution α1 of the ℓ 1 minimization problem min �x�1 subject to Φα = y is unique and equal to α0
Closedform solution of absolute orientation using unit quaternions
 J. Opt. Soc. Am. A
, 1987
"... Finding the relationship between two coordinate systems using pairs of measurements of the coordinates of a number of points in both systems is a classic photogrammetric task. It finds applications in stereophotogrammetry and in robotics. I present here a closedform solution to the leastsquares pr ..."
Abstract

Cited by 973 (4 self)
 Add to MetaCart
Finding the relationship between two coordinate systems using pairs of measurements of the coordinates of a number of points in both systems is a classic photogrammetric task. It finds applications in stereophotogrammetry and in robotics. I present here a closedform solution to the least
Guaranteed minimumrank solutions of linear matrix equations via nuclear norm minimization
, 2007
"... The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative ..."
Abstract

Cited by 568 (23 self)
 Add to MetaCart
for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds
Results 1  10
of
1,108,024