Results 1  10
of
4,859
Parallel Numerical Linear Algebra
, 1993
"... We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of parallel processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We illust ..."
Abstract

Cited by 773 (23 self)
 Add to MetaCart
We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of parallel processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We
Parallel Multiplication of a Vector by a Kronecker Tensor Product of Matrices. Parallel numerical linear algebra
, 2001
"... Abstract Dierent parallel algorithms are designed and evaluated for computing the multipli cation of a vector by a Kronecker tensor product of elementary matrices The algorithms are based on an analytic computation model together with some algebraic properties of the Kronecker multi plication Fro ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract Dierent parallel algorithms are designed and evaluated for computing the multipli cation of a vector by a Kronecker tensor product of elementary matrices The algorithms are based on an analytic computation model together with some algebraic properties of the Kronecker multi plication
Automatically tuned linear algebra software
 CONFERENCE ON HIGH PERFORMANCE NETWORKING AND COMPUTING
, 1998
"... This paper describes an approach for the automatic generation and optimization of numerical software for processors with deep memory hierarchies and pipelined functional units. The production of such software for machines ranging from desktop workstations to embedded processors can be a tedious and ..."
Abstract

Cited by 478 (26 self)
 Add to MetaCart
and time consuming process. The work described here can help in automating much of this process. We will concentrate our e orts on the widely used linear algebra kernels called the Basic Linear Algebra Subroutines (BLAS). In particular, the work presented here is for general matrix multiply, DGEMM. However
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 653 (21 self)
 Add to MetaCart
gradient algorithms, indicating that I~QR is the most reliable algorithm when A is illconditioned. Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: ApprorJmationleast squares approximation; G.1.3 [Numerical Analysis]: Numerical Linear Algebralinear systems (direct and
Linear Algebra Operators for GPU Implementation of Numerical Algorithms
 ACM Transactions on Graphics
, 2003
"... In this work, the emphasis is on the development of strategies to realize techniques of numerical computing on the graphics chip. In particular, the focus is on the acceleration of techniques for solving sets of algebraic equations as they occur in numerical simulation. We introduce a framework for ..."
Abstract

Cited by 324 (9 self)
 Add to MetaCart
for the implementation of linear algebra operators on programmable graphics processors (GPUs), thus providing the building blocks for the design of more complex numerical algorithms. In particular, we propose a stream model for arithmetic operations on vectors and matrices that exploits the intrinsic parallelism
Guaranteed minimumrank solutions of linear matrix equations via nuclear norm minimization,”
 SIAM Review,
, 2010
"... Abstract The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and col ..."
Abstract

Cited by 562 (20 self)
 Add to MetaCart
Abstract The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding
The geometry of algorithms with orthogonality constraints
 SIAM J. MATRIX ANAL. APPL
, 1998
"... In this paper we develop new Newton and conjugate gradient algorithms on the Grassmann and Stiefel manifolds. These manifolds represent the constraints that arise in such areas as the symmetric eigenvalue problem, nonlinear eigenvalue problems, electronic structures computations, and signal proces ..."
Abstract

Cited by 640 (1 self)
 Add to MetaCart
processing. In addition to the new algorithms, we show how the geometrical framework gives penetrating new insights allowing us to create, understand, and compare algorithms. The theory proposed here provides a taxonomy for numerical linear algebra algorithms that provide a top level mathematical view
Tensor Decompositions and Applications
 SIAM REVIEW
, 2009
"... This survey provides an overview of higherorder tensor decompositions, their applications, and available software. A tensor is a multidimensional or N way array. Decompositions of higherorder tensors (i.e., N way arrays with N â¥ 3) have applications in psychometrics, chemometrics, signal proce ..."
Abstract

Cited by 723 (18 self)
 Add to MetaCart
processing, numerical linear algebra, computer vision, numerical analysis, data mining, neuroscience, graph analysis, etc. Two particular tensor decompositions can be considered to be higherorder extensions of the matrix singular value decompo
sition: CANDECOMP/PARAFAC (CP) decomposes a tensor as a sum
Award
, 2000
"... • Extremescale parallel numerical linear algebra • Automatic performance tuning of computational kernels • Parallel programming models, libraries, and languages ..."
Abstract
 Add to MetaCart
• Extremescale parallel numerical linear algebra • Automatic performance tuning of computational kernels • Parallel programming models, libraries, and languages
EDUCATION
, 2000
"... • Scalable parallel numerical linear algebra • Performance optimization of computational kernels • Parallel programming libraries and languages ..."
Abstract
 Add to MetaCart
• Scalable parallel numerical linear algebra • Performance optimization of computational kernels • Parallel programming libraries and languages
Results 1  10
of
4,859