• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 11,914
Next 10 →

The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins

by Zsuzsanna Dosztányi, Veronika Csizmók, Péter Tompa, István Simon - J. Mol. Biol , 2005
"... Intrinsically unstructured/disordered proteins/ domains (IUPs), such as p21, 1 the N-terminal domain of p53 2 or the transactivator domain of CREB, 3 exist in a largely disordered structural state, ..."
Abstract - Cited by 114 (14 self) - Add to MetaCart
Intrinsically unstructured/disordered proteins/ domains (IUPs), such as p21, 1 the N-terminal domain of p53 2 or the transactivator domain of CREB, 3 exist in a largely disordered structural state,

An Energy-Efficient MAC Protocol for Wireless Sensor Networks

by Wei Ye, John Heidemann, Deborah Estrin , 2002
"... This paper proposes S-MAC, a medium-access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect senso ..."
Abstract - Cited by 1517 (36 self) - Add to MetaCart
wireless MACs such as IEEE 802.11 in almost every way: energy conservation and self-configuration are primary goals, while per-node fairness and latency are less important. S-MAC uses three novel techniques to reduce energy consumption and support self-configuration. To reduce energy consumption

An Adaptive Energy-Efficient MAC Protocol for Wireless Sensor Networks

by Tijs van Dam, Koen Langendoen - SENSYS'03 , 2003
"... In this paper we describe T-MAC, a contention-based Medium Access Control protocol for wireless sensor networks. Applications for these networks have some characteristics (low message rate, insensitivity to latency) that can be exploited to reduce energy consumption by introducing an active/sleep du ..."
Abstract - Cited by 534 (13 self) - Add to MetaCart
In this paper we describe T-MAC, a contention-based Medium Access Control protocol for wireless sensor networks. Applications for these networks have some characteristics (low message rate, insensitivity to latency) that can be exploited to reduce energy consumption by introducing an active

Medium Access Control with Coordinated Adaptive Sleeping for Wireless Sensor Networks

by Wei Ye, John Heidemann, Deborah Estrin - IEEE/ACM Transactions on Networking , 2004
"... This paper proposes S-MAC, a medium access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect senso ..."
Abstract - Cited by 702 (15 self) - Add to MetaCart
.11 in several ways: energy conservation and self-configuration are primary goals, while per-node fairness and latency are less important. S-MAC uses a few novel techniques to reduce energy consumption and support self-configuration. It enables low-duty-cycle operation in a multihop network. Nodes form virtual

Geodesic Active Contours

by Vicent Caselles, Ron Kimmel, Guillermo Sapiro , 1997
"... A novel scheme for the detection of object boundaries is presented. The technique is based on active contours evolving in time according to intrinsic geometric measures of the image. The evolving contours naturally split and merge, allowing the simultaneous detection of several objects and both in ..."
Abstract - Cited by 1425 (47 self) - Add to MetaCart
interior and exterior boundaries. The proposed approach is based on the relation between active contours and the computation of geodesics or minimal distance curves. The minimal distance curve lays in a Riemannian space whose metric is defined by the image content. This geodesic approach for object

Geographic random forwarding (GeRaF) for ad hoc and sensor networks: Energy and latency performance

by Michele Zorzi, Ramesh R. Rao - IEEE TRANSACTIONS ON MOBILE COMPUTING , 2003
"... In this paper, we study a novel forwarding technique based on geographical location of the nodes involved and random selection of the relaying node via contention among receivers. We provide a detailed description of a MAC scheme based on these concepts and on collision avoidance and report on its e ..."
Abstract - Cited by 368 (15 self) - Add to MetaCart
In this paper, we study a novel forwarding technique based on geographical location of the nodes involved and random selection of the relaying node via contention among receivers. We provide a detailed description of a MAC scheme based on these concepts and on collision avoidance and report on its

Seam carving for content-aware image resizing

by Shai Avidan, Ariel Shamir - ACM Trans. Graph , 2007
"... Figure 1: A seam is a connected path of low energy pixels in an image. On the left is the original image with one horizontal and one vertical seam. In the middle the energy function used in this example is shown (the magnitude of the gradient), along with the vertical and horizontal path maps used t ..."
Abstract - Cited by 323 (11 self) - Add to MetaCart
. The selection and order of seams protect the content of the image, as defined by the energy function. Seam carving can also be used for image content enhancement and object removal. We support various visual saliency measures for defining the energy of an image, and can also include user input to guide

Z-MAC: a Hybrid MAC for Wireless Sensor Networks

by Ajit Warrier, Jeongki Min, Injong Rhee , 2005
"... Z-MAC is a hybrid MAC protocol for wireless sensor networks. It combines the strengths of TDMA and CSMA while offsetting their weaknesses. Nodes are assigned time slots using a distributed implementation of RAND. Unlike TDMA where a node is allowed to transmit only during its own assigned slots, a n ..."
Abstract - Cited by 296 (7 self) - Add to MetaCart
the effect of switching between CSMA and TDMA depending on contention. Z-MAC is robust to topology changes and clock synchronization errors; in the worst case its performance falls back to that of CSMA. We implemented Z-MAC in TinyOS and evaluated its channel utilization, energy, latency and fairness over

Efficient routing in intermittently connected mobile networks: The multiple-copy case

by Thrasyvoulos Spyropoulos, Konstantinos Psounis, Cauligi S. Raghavendra , 2008
"... Intermittently connected mobile networks are wireless networks where most of the time there does not exist a complete path from the source to the destination. There are many real networks that follow this model, for example, wildlife tracking sensor networks, military networks, vehicular ad hoc net ..."
Abstract - Cited by 303 (18 self) - Add to MetaCart
, they waste a lot of energy and suffer from severe contention which can significantly degrade their performance. Furthermore, proposed efforts to reduce the overhead of flooding-based schemes have often been plagued by large delays. With this in mind, we introduce a new family of routing schemes that “spray

A Probabilistic Framework for Semi-Supervised Clustering

by Sugato Basu , 2004
"... Unsupervised clustering can be significantly improved using supervision in the form of pairwise constraints, i.e., pairs of instances labeled as belonging to same or different clusters. In recent years, a number of algorithms have been proposed for enhancing clustering quality by employing such supe ..."
Abstract - Cited by 275 (14 self) - Add to MetaCart
Unsupervised clustering can be significantly improved using supervision in the form of pairwise constraints, i.e., pairs of instances labeled as belonging to same or different clusters. In recent years, a number of algorithms have been proposed for enhancing clustering quality by employing
Next 10 →
Results 1 - 10 of 11,914
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University