• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 1,097,737
Next 10 →

Training Support Vector Machines: an Application to Face Detection

by Edgar Osuna, Robert Freund, Federico Girosi , 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract - Cited by 728 (1 self) - Add to MetaCart
We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision

Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms

by Michael Collins , 2002
"... We describe new algorithms for training tagging models, as an alternative to maximum-entropy models or conditional random fields (CRFs). The algorithms rely on Viterbi decoding of training examples, combined with simple additive updates. We describe theory justifying the algorithms through a modific ..."
Abstract - Cited by 641 (16 self) - Add to MetaCart
We describe new algorithms for training tagging models, as an alternative to maximum-entropy models or conditional random fields (CRFs). The algorithms rely on Viterbi decoding of training examples, combined with simple additive updates. We describe theory justifying the algorithms through a

Parallel Networks that Learn to Pronounce English Text

by Terrence J. Sejnowski, Charles R. Rosenberg - COMPLEX SYSTEMS , 1987
"... This paper describes NETtalk, a class of massively-parallel network systems that learn to convert English text to speech. The memory representations for pronunciations are learned by practice and are shared among many processing units. The performance of NETtalk has some similarities with observed h ..."
Abstract - Cited by 548 (5 self) - Add to MetaCart
is essential. (iv) Relearning after damage is much faster than learning during the original training. (v) Distributed or spaced practice is more effective for long-term retention than massed practice. Network models can be constructed that have the same performance and learning characteristics on a particular

Designing Games With A Purpose

by Luis von Ahn , Laura Dabbish , 2008
"... Data generated as a side effect of game play also solves computational problems and trains AI algorithms. ..."
Abstract - Cited by 524 (2 self) - Add to MetaCart
Data generated as a side effect of game play also solves computational problems and trains AI algorithms.

Inductive Learning Algorithms and Representations for Text Categorization

by Susan Dumais, John Platt, Mehran Sahami, David Heckerman , 1998
"... Text categorization – the assignment of natural language texts to one or more predefined categories based on their content – is an important component in many information organization and management tasks. We compare the effectiveness of five different automatic learning algorithms for text categori ..."
Abstract - Cited by 641 (8 self) - Add to MetaCart
categorization in terms of learning speed, realtime classification speed, and classification accuracy. We also examine training set size, and alternative document representations. Very accurate text classifiers can be learned automatically from training examples. Linear Support Vector Machines (SVMs

Shallow Parsing with Conditional Random Fields

by Fei Sha, Fernando Pereira , 2003
"... Conditional random fields for sequence labeling offer advantages over both generative models like HMMs and classifiers applied at each sequence position. Among sequence labeling tasks in language processing, shallow parsing has received much attention, with the development of standard evaluati ..."
Abstract - Cited by 575 (8 self) - Add to MetaCart
evaluation datasets and extensive comparison among methods. We show here how to train a conditional random field to achieve performance as good as any reported base noun-phrase chunking method on the CoNLL task, and better than any reported single model. Improved training methods based on modern

Text Classification from Labeled and Unlabeled Documents using EM

by Kamal Nigam, Andrew Kachites Mccallum, Sebastian Thrun, Tom Mitchell - MACHINE LEARNING , 1999
"... This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classification problems obtaining training labels is expensive, while large qua ..."
Abstract - Cited by 1033 (19 self) - Add to MetaCart
This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classification problems obtaining training labels is expensive, while large

Automatic Word Sense Discrimination

by Hinrich Schütze - Journal of Computational Linguistics , 1998
"... This paper presents context-group discrimination, a disambiguation algorithm based on clustering. Senses are interpreted as groups (or clusters) of similar contexts of the ambiguous word. Words, contexts, and senses are represented in Word Space, a high-dimensional, real-valued space in which closen ..."
Abstract - Cited by 530 (1 self) - Add to MetaCart
closeness corresponds to semantic similarity. Similarity in Word Space is based on second-order co-occurrence: two tokens (or contexts) of the ambiguous word are assigned to the same sense cluster if the words they co-occur with in turn occur with similar words in a training corpus. The algorithm

A Trainable Document Summarizer

by Julian Kupiec, Jan Pedersen, Francine Chen , 1995
"... To summarize is to reduce in complexity, and hence in length, while retaining some of the essential qualities of the original. This paper focusses on document extracts, a particular kind of computed document summary. ..."
Abstract - Cited by 525 (2 self) - Add to MetaCart
To summarize is to reduce in complexity, and hence in length, while retaining some of the essential qualities of the original. This paper focusses on document extracts, a particular kind of computed document summary.

Ensemble Methods in Machine Learning

by Thomas G. Dietterich - MULTIPLE CLASSIFIER SYSTEMS, LBCS-1857 , 2000
"... Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions. The original ensemble method is Bayesian averaging, but more recent algorithms include error-correcting output coding, Bagging, and boostin ..."
Abstract - Cited by 607 (3 self) - Add to MetaCart
Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions. The original ensemble method is Bayesian averaging, but more recent algorithms include error-correcting output coding, Bagging
Next 10 →
Results 1 - 10 of 1,097,737
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University