• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 31,674
Next 10 →

Nearest neighbor queries.

by Nick Roussopoulos , Stephen Kelley , Fr Ed , Eric Vincent - ACM SIGMOD Record, , 1995
"... Abstract A frequently encountered type of query in Geographic Information Systems is to nd the k nearest neighbor objects to a given point in space. Processing such queries requires substantially di erent search algorithms than those for location or range queries. In this paper we present a n e cie ..."
Abstract - Cited by 592 (1 self) - Add to MetaCart
Abstract A frequently encountered type of query in Geographic Information Systems is to nd the k nearest neighbor objects to a given point in space. Processing such queries requires substantially di erent search algorithms than those for location or range queries. In this paper we present a n e

Querying Heterogeneous Information Sources Using Source Descriptions

by Alon Levy, Anand Rajaraman, Joann Ordille , 1996
"... We witness a rapid increase in the number of structured information sources that are available online, especially on the WWW. These sources include commercial databases on product information, stock market information, real estate, automobiles, and entertainment. We would like to use the data stored ..."
Abstract - Cited by 724 (34 self) - Add to MetaCart
stored in these databases to answer complex queries that go beyond keyword searches. We face the following challenges: (1) Several information sources store interrelated data, and any query-answering system must understand the relationships between their contents. (2) Many sources are not full

Visual Information Seeking: Tight Coupling of Dynamic Query Filters with Starfield Displays

by Christopher Ahlberg, Ben Shneiderman , 1994
"... This paper offers new principles for visual information seeking (VIS). A key concept is to support browsing, which is distinguished from familiar query composition and information retrieval because of its emphasis on rapid filtering to reduce result sets, progressive refinement of search parameters, ..."
Abstract - Cited by 631 (51 self) - Add to MetaCart
This paper offers new principles for visual information seeking (VIS). A key concept is to support browsing, which is distinguished from familiar query composition and information retrieval because of its emphasis on rapid filtering to reduce result sets, progressive refinement of search parameters

Efficient similarity search in sequence databases

by Rakesh Agrawal, Christos Faloutsos, Arun Swami , 1994
"... We propose an indexing method for time sequences for processing similarity queries. We use the Discrete Fourier Transform (DFT) to map time sequences to the frequency domain, the crucial observation being that, for most sequences of practical interest, only the first few frequencies are strong. Anot ..."
Abstract - Cited by 515 (19 self) - Add to MetaCart
the sequences and e ciently answer similarity queries. We provide experimental results which show that our method is superior to search based on sequential scanning. Our experiments show that a few coefficients (1-3) are adequate to provide good performance. The performance gain of our method increases

VisualSEEk: a fully automated content-based image query system

by John R. Smith, Shih-fu Chang , 1996
"... We describe a highly functional prototype system for searching by visual features in an image database. The VisualSEEk system is novel in that the user forms the queries by diagramming spatial arrangements of color regions. The system finds the images that contain the most similar arrangements of ..."
Abstract - Cited by 762 (31 self) - Add to MetaCart
We describe a highly functional prototype system for searching by visual features in an image database. The VisualSEEk system is novel in that the user forms the queries by diagramming spatial arrangements of color regions. The system finds the images that contain the most similar arrangements

Search and replication in unstructured peer-to-peer networks

by Qin Lv, Pei Cao, Edith Cohen, Kai Li, Scott Shenker , 2002
"... Abstract Decentralized and unstructured peer-to-peer networks such as Gnutella are attractive for certain applicationsbecause they require no centralized directories and no precise control over network topologies and data placement. However, the flooding-based query algorithm used in Gnutella does n ..."
Abstract - Cited by 692 (6 self) - Add to MetaCart
Abstract Decentralized and unstructured peer-to-peer networks such as Gnutella are attractive for certain applicationsbecause they require no centralized directories and no precise control over network topologies and data placement. However, the flooding-based query algorithm used in Gnutella does

Optimizing Search Engines using Clickthrough Data

by Thorsten Joachims , 2002
"... This paper presents an approach to automatically optimizing the retrieval quality of search engines using clickthrough data. Intuitively, a good information retrieval system should present relevant documents high in the ranking, with less relevant documents following below. While previous approaches ..."
Abstract - Cited by 1314 (23 self) - Add to MetaCart
This paper presents an approach to automatically optimizing the retrieval quality of search engines using clickthrough data. Intuitively, a good information retrieval system should present relevant documents high in the ranking, with less relevant documents following below. While previous

Similarity search in high dimensions via hashing

by Aristides Gionis, Piotr Indyk, Rajeev Motwani , 1999
"... The nearest- or near-neighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over high-dimensional data, e.g., image dat ..."
Abstract - Cited by 641 (10 self) - Add to MetaCart
The nearest- or near-neighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over high-dimensional data, e.g., image

Topic-Sensitive PageRank

by Taher Haveliwala , 2002
"... In the original PageRank algorithm for improving the ranking of search-query results, a single PageRank vector is computed, using the link structure of the Web, to capture the relative "importance" of Web pages, independent of any particular search query. To yield more accurate search resu ..."
Abstract - Cited by 543 (10 self) - Add to MetaCart
In the original PageRank algorithm for improving the ranking of search-query results, a single PageRank vector is computed, using the link structure of the Web, to capture the relative "importance" of Web pages, independent of any particular search query. To yield more accurate search

An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions

by Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, Angela Y. Wu - ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS , 1994
"... Consider a set S of n data points in real d-dimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any po ..."
Abstract - Cited by 984 (32 self) - Add to MetaCart
Consider a set S of n data points in real d-dimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any
Next 10 →
Results 1 - 10 of 31,674
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University