Results 1  10
of
176,927
Ideal spatial adaptation by wavelet shrinkage
 Biometrika
, 1994
"... With ideal spatial adaptation, an oracle furnishes information about how best to adapt a spatially variable estimator, whether piecewise constant, piecewise polynomial, variable knot spline, or variable bandwidth kernel, to the unknown function. Estimation with the aid of an oracle o ers dramatic ad ..."
Abstract

Cited by 1251 (5 self)
 Add to MetaCart
With ideal spatial adaptation, an oracle furnishes information about how best to adapt a spatially variable estimator, whether piecewise constant, piecewise polynomial, variable knot spline, or variable bandwidth kernel, to the unknown function. Estimation with the aid of an oracle o ers dramatic
Mixtures of Probabilistic Principal Component Analysers
, 1998
"... Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a com ..."
Abstract

Cited by 537 (6 self)
 Add to MetaCart
maximumlikelihood framework, based on a specific form of Gaussian latent variable model. This leads to a welldefined mixture model for probabilistic principal component analysers, whose parameters can be determined using an EM algorithm. We discuss the advantages of this model in the context
Semantic Similarity in a Taxonomy: An InformationBased Measure and its Application to Problems of Ambiguity in Natural Language
, 1999
"... This article presents a measure of semantic similarityinanisa taxonomy based on the notion of shared information content. Experimental evaluation against a benchmark set of human similarity judgments demonstrates that the measure performs better than the traditional edgecounting approach. The a ..."
Abstract

Cited by 601 (9 self)
 Add to MetaCart
. The article presents algorithms that take advantage of taxonomic similarity in resolving syntactic and semantic ambiguity, along with experimental results demonstrating their e#ectiveness. 1. Introduction Evaluating semantic relatedness using network representations is a problem with a long history
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 696 (15 self)
 Add to MetaCart
and the first control in this sequence is applied to the plant. An important advantage of this type of control is its ability to cope with hard constraints on controls and states. It has, therefore, been widely applied in petrochemical and related industries where satisfaction of constraints is particularly
Pig Latin: A NotSoForeign Language for Data Processing
"... There is a growing need for adhoc analysis of extremely large data sets, especially at internet companies where innovation critically depends on being able to analyze terabytes of data collected every day. Parallel database products, e.g., Teradata, offer a solution, but are usually prohibitively e ..."
Abstract

Cited by 584 (12 self)
 Add to MetaCart
level, procedural style of mapreduce. The accompanying system, Pig, is fully implemented, and compiles Pig Latin into physical plans that are executed over Hadoop, an opensource, mapreduce implementation. We give a few examples of how engineers at Yahoo! are using Pig to dramatically reduce the time required
Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection
, 1997
"... We develop a face recognition algorithm which is insensitive to gross variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a highdimensional space. We take advantage of the observation that the images ..."
Abstract

Cited by 2263 (18 self)
 Add to MetaCart
We develop a face recognition algorithm which is insensitive to gross variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a highdimensional space. We take advantage of the observation that the images
NonMalleable Cryptography
 SIAM Journal on Computing
, 2000
"... The notion of nonmalleable cryptography, an extension of semantically secure cryptography, is defined. Informally, in the context of encryption the additional requirement is that given the ciphertext it is impossible to generate a different ciphertext so that the respective plaintexts are related. ..."
Abstract

Cited by 490 (21 self)
 Add to MetaCart
system users. Our cryptosystem is the first proven to be secure against a strong type of chosen ciphertext attack proposed by Rackoff and Simon, in which the attacker knows the ciphertext she wishes to break and can query the decryption oracle on any ciphertext other than the target.
Short signatures from the Weil pairing
, 2001
"... Abstract. We introduce a short signature scheme based on the Computational DiffieHellman assumption on certain elliptic and hyperelliptic curves. The signature length is half the size of a DSA signature for a similar level of security. Our short signature scheme is designed for systems where signa ..."
Abstract

Cited by 743 (28 self)
 Add to MetaCart
Abstract. We introduce a short signature scheme based on the Computational DiffieHellman assumption on certain elliptic and hyperelliptic curves. The signature length is half the size of a DSA signature for a similar level of security. Our short signature scheme is designed for systems where signatures are typed in by a human or signatures are sent over a lowbandwidth channel. 1
The Anatomy of a ContextAware Application
 WIRELESS NETWORKS, VOL
, 1999
"... We describe a platform for contextaware computing which enables applications to follow mobile users as they move around a building. The platform is particularly suitable for richly equipped, networked environments. The only item a user is required to carry is a small sensor tag, which identifies th ..."
Abstract

Cited by 532 (3 self)
 Add to MetaCart
We describe a platform for contextaware computing which enables applications to follow mobile users as they move around a building. The platform is particularly suitable for richly equipped, networked environments. The only item a user is required to carry is a small sensor tag, which identifies them to the system and locates them accurately in three dimensions. The platform builds a dynamic model of the environment using these location sensors and resource information gathered by telemetry software, and presents it in a form suitable for application programmers. Use of the platform is illustrated through a practical example, which allows a user's current working desktop to follow them as they move around the environment.
The strength of weak learnability
 Machine Learning
, 1990
"... Abstract. This paper addresses the problem of improving the accuracy of an hypothesis output by a learning algorithm in the distributionfree (PAC) learning model. A concept class is learnable (or strongly learnable) if, given access to a Source of examples of the unknown concept, the learner with h ..."
Abstract

Cited by 861 (24 self)
 Add to MetaCart
Abstract. This paper addresses the problem of improving the accuracy of an hypothesis output by a learning algorithm in the distributionfree (PAC) learning model. A concept class is learnable (or strongly learnable) if, given access to a Source of examples of the unknown concept, the learner with high probability is able to output an hypothesis that is correct on all but an arbitrarily small fraction of the instances. The concept class is weakly learnable if the learner can produce an hypothesis that performs only slightly better than random guessing. In this paper, it is shown that these two notions of learnability are equivalent. A method is described for converting a weak learning algorithm into one that achieves arbitrarily high accuracy. This construction may have practical applications as a tool for efficiently converting a mediocre learning algorithm into one that performs extremely well. In addition, the construction has some interesting theoretical consequences, including a set of general upper bounds on the complexity of any strong learning algorithm as a function of the allowed error e.
Results 1  10
of
176,927