Results 1  10
of
1,042,899
Computing the optimal strategy to commit to
 IN PROCEEDINGS OF THE 7TH ACM CONFERENCE ON ELECTRONIC COMMERCE (ACMEC
, 2006
"... In multiagent systems, strategic settings are often analyzed under the assumption that the players choose their strategies simultaneously. However, this model is not always realistic. In many settings, one player is able to commit to a strategy before the other player makes a decision. Such models a ..."
Abstract

Cited by 145 (21 self)
 Add to MetaCart
are synonymously referred to as leadership, commitment, or Stackelberg models, and optimal play in such models is often significantly different from optimal play in the model where strategies are selected simultaneously. The recent surge in interest in computing gametheoretic solutions has so far ignored
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1516 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
Optimal Strategy in the
, 2008
"... In this paper, we will be using a simplified method (a geometric distribution statistical approach) and move through a more detailed approach (using dynamic programming) to analyze when contestants should quit versus when they should stay in the TV game show “1 vs. 100. ” We will observe optimal con ..."
Abstract
 Add to MetaCart
In this paper, we will be using a simplified method (a geometric distribution statistical approach) and move through a more detailed approach (using dynamic programming) to analyze when contestants should quit versus when they should stay in the TV game show “1 vs. 100. ” We will observe optimal
The Vocabulary Problem in HumanSystem Communication
 COMMUNICATIONS OF THE ACM
, 1987
"... In almost all computer applications, users must enter correct words for the desired objects or actions. For success without extensive training, or in firsttries for new targets, the system must recognize terms that will be chosen spontaneously. We studied spontaneous word choice for objects in five ..."
Abstract

Cited by 559 (8 self)
 Add to MetaCart
. For example, the popular approach in which access is via one designer's favorite single word will result in 8090 percent failure rates in many common situations. An optimal strategy, unlimited aliasing, is derived and shown to be capable of severalfold improvements.
NiagaraCQ: A Scalable Continuous Query System for Internet Databases
 In SIGMOD
, 2000
"... Continuous queries are persistent queries that allow users to receive new results when they become available. While continuous query systems can transform a passive web into an active environment, they need to be able to support millions of queries due to the scale of the Internet. No existing syste ..."
Abstract

Cited by 583 (9 self)
 Add to MetaCart
. Furthermore, grouping on selection predicates can eliminate a large number of unnecessary query invocations. Our grouping technique is distinguished from previous group optimization approaches in the following ways. First, we use an incremental group optimization strategy with dynamic regrouping. New queries
Tractable reasoning and efficient query answering in description logics: The DLLite family
 J. OF AUTOMATED REASONING
, 2007
"... We propose a new family of Description Logics (DLs), called DLLite, specifically tailored to capture basic ontology languages, while keeping low complexity of reasoning. Reasoning here means not only computing subsumption between concepts, and checking satisfiability of the whole knowledge base, b ..."
Abstract

Cited by 495 (123 self)
 Add to MetaCart
TBox reasoning is independent of the ABox, and the part of the process requiring access to the ABox can be carried out by an SQL engine, thus taking advantage of the query optimization strategies provided by current Data Base Management Systems. Since it can be shown that even slight extensions
Adaptive floating search methods in feature selection
 PATTERN RECOGNITION LETTERS
, 1999
"... A new suboptimal search strategy for feature selection is presented. It represents a more sophisticated version of "classical" floating search algorithms (Pudil et al., 1994), attempts to remove some of their potential deficiencies and facilitates finding a solution even closer to the opti ..."
Abstract

Cited by 545 (21 self)
 Add to MetaCart
A new suboptimal search strategy for feature selection is presented. It represents a more sophisticated version of "classical" floating search algorithms (Pudil et al., 1994), attempts to remove some of their potential deficiencies and facilitates finding a solution even closer
Greedy Randomized Adaptive Search Procedures
, 2002
"... GRASP is a multistart metaheuristic for combinatorial problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search phas ..."
Abstract

Cited by 648 (82 self)
 Add to MetaCart
based intensification and postoptimization techniques using pathrelinking. Hybridizations with other metaheuristics, parallelization strategies, and applications are also reviewed.
SPEA2: Improving the Strength Pareto Evolutionary Algorithm
, 2001
"... The Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele 1999) is a relatively recent technique for finding or approximating the Paretooptimal set for multiobjective optimization problems. In different studies (Zitzler and Thiele 1999; Zitzler, Deb, and Thiele 2000) SPEA has shown very ..."
Abstract

Cited by 704 (19 self)
 Add to MetaCart
The Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele 1999) is a relatively recent technique for finding or approximating the Paretooptimal set for multiobjective optimization problems. In different studies (Zitzler and Thiele 1999; Zitzler, Deb, and Thiele 2000) SPEA has shown
TABU SEARCH
"... Tabu Search is a metaheuristic that guides a local heuristic search procedure to explore the solution space beyond local optimality. One of the main components of tabu search is its use of adaptive memory, which creates a more flexible search behavior. Memory based strategies are therefore the hallm ..."
Abstract

Cited by 819 (48 self)
 Add to MetaCart
Tabu Search is a metaheuristic that guides a local heuristic search procedure to explore the solution space beyond local optimality. One of the main components of tabu search is its use of adaptive memory, which creates a more flexible search behavior. Memory based strategies are therefore
Results 1  10
of
1,042,899