Results 1 - 10
of
27,241
General Linear Quadratic Optimal Stochastic Control Problem Driven by a Brownian Motion and a Poisson Random Martingale Measure with Random Coefficients
, 2011
"... ..."
Planning and acting in partially observable stochastic domains
- ARTIFICIAL INTELLIGENCE
, 1998
"... In this paper, we bring techniques from operations research to bear on the problem of choosing optimal actions in partially observable stochastic domains. We begin by introducing the theory of Markov decision processes (mdps) and partially observable mdps (pomdps). We then outline a novel algorithm ..."
Abstract
-
Cited by 1095 (38 self)
- Add to MetaCart
In this paper, we bring techniques from operations research to bear on the problem of choosing optimal actions in partially observable stochastic domains. We begin by introducing the theory of Markov decision processes (mdps) and partially observable mdps (pomdps). We then outline a novel algorithm
Constrained model predictive control: Stability and optimality
- AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon open-loop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract
-
Cited by 738 (16 self)
- Add to MetaCart
Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon open-loop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence
Optimization Flow Control, I: Basic Algorithm and Convergence
- IEEE/ACM TRANSACTIONS ON NETWORKING
, 1999
"... We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm. In thi ..."
Abstract
-
Cited by 694 (64 self)
- Add to MetaCart
We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm
The Ant System: Optimization by a colony of cooperating agents
- IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B
, 1996
"... An analogy with the way ant colonies function has suggested the definition of a new computational paradigm, which we call Ant System. We propose it as a viable new approach to stochastic combinatorial optimization. The main characteristics of this model are positive feedback, distributed computation ..."
Abstract
-
Cited by 1300 (46 self)
- Add to MetaCart
An analogy with the way ant colonies function has suggested the definition of a new computational paradigm, which we call Ant System. We propose it as a viable new approach to stochastic combinatorial optimization. The main characteristics of this model are positive feedback, distributed
The Nonstochastic Multiarmed Bandit Problem
- SIAM JOURNAL OF COMPUTING
, 2002
"... In the multiarmed bandit problem, a gambler must decide which arm of K non-identical slot machines to play in a sequence of trials so as to maximize his reward. This classical problem has received much attention because of the simple model it provides of the trade-off between exploration (trying out ..."
Abstract
-
Cited by 491 (34 self)
- Add to MetaCart
of the process generating the payoffs of the slot machines. We give a solution to the bandit problem in which an adversary, rather than a well-behaved stochastic process, has complete control over the payoffs. In a sequence of T plays, we prove that the per-round payoff of our algorithm approaches
Topology Control of Multihop Wireless Networks using Transmit Power Adjustment
, 2000
"... We consider the problem of adjusting the transmit powers of nodes in a multihop wireless network (also called an ad hoc network) to create a desired topology. We formulate it as a constrained optimization problem with two constraints- connectivity and biconnectivity, and one optimization objective- ..."
Abstract
-
Cited by 688 (3 self)
- Add to MetaCart
We consider the problem of adjusting the transmit powers of nodes in a multihop wireless network (also called an ad hoc network) to create a desired topology. We formulate it as a constrained optimization problem with two constraints- connectivity and biconnectivity, and one optimization objective
New results in linear filtering and prediction theory
- TRANS. ASME, SER. D, J. BASIC ENG
, 1961
"... A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary sta ..."
Abstract
-
Cited by 607 (0 self)
- Add to MetaCart
in this field. The Duality Principle relating stochastic estimation and deterministic control problems plays an important role in the proof of theoretical results. In several examples, the estimation problem and its dual are discussed side-by-side. Properties of the variance equation are of great interest
Decision-Theoretic Planning: Structural Assumptions and Computational Leverage
- JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1999
"... Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives ..."
Abstract
-
Cited by 515 (4 self)
- Add to MetaCart
Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions
Pegasos: Primal Estimated sub-gradient solver for SVM
"... We describe and analyze a simple and effective stochastic sub-gradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a singl ..."
Abstract
-
Cited by 542 (20 self)
- Add to MetaCart
We describe and analyze a simple and effective stochastic sub-gradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a
Results 1 - 10
of
27,241