Results 1  10
of
108,035
Optimal Aggregation Algorithms for Middleware
 IN PODS
, 2001
"... Assume that each object in a database has m grades, or scores, one for each of m attributes. For example, an object can have a color grade, that tells how red it is, and a shape grade, that tells how round it is. For each attribute, there is a sorted list, which lists each object and its grade under ..."
Abstract

Cited by 717 (4 self)
 Add to MetaCart
must access every object in the database, to find its grade under each attribute. Fagin has given an algorithm (“Fagin’s Algorithm”, or FA) that is much more efficient. For some monotone aggregation functions, FA is optimal with high probability in the worst case. We analyze an elegant and remarkably
Ant algorithms for discrete optimization
 ARTIFICIAL LIFE
, 1999
"... This article presents an overview of recent work on ant algorithms, that is, algorithms for discrete optimization that took inspiration from the observation of ant colonies’ foraging behavior, and introduces the ant colony optimization (ACO) metaheuristic. In the first part of the article the basic ..."
Abstract

Cited by 489 (42 self)
 Add to MetaCart
This article presents an overview of recent work on ant algorithms, that is, algorithms for discrete optimization that took inspiration from the observation of ant colonies’ foraging behavior, and introduces the ant colony optimization (ACO) metaheuristic. In the first part of the article the basic
A Data Locality Optimizing Algorithm
, 1991
"... This paper proposes an algorithm that improves the locality of a loop nest by transforming the code via interchange, reversal, skewing and tiling. The loop transformation algorithm is based on two concepts: a mathematical formulation of reuse and locality, and a loop transformation theory that unifi ..."
Abstract

Cited by 804 (16 self)
 Add to MetaCart
that unifies the various transforms as unimodular matrix transformations. The algorithm has been implemented in the SUIF (Stanford University Intermediate Format) compiler, and is successful in optimizing codes such as matrix multiplication, successive overrelaxation (SOR), LU decomposition without pivoting
A Fast Quantum Mechanical Algorithm for Database Search
 ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING
, 1996
"... Imagine a phone directory containing N names arranged in completely random order. In order to find someone's phone number with a probability of , any classical algorithm (whether deterministic or probabilistic)
will need to look at a minimum of names. Quantum mechanical systems can be in a supe ..."
Abstract

Cited by 1135 (10 self)
 Add to MetaCart
Imagine a phone directory containing N names arranged in completely random order. In order to find someone's phone number with a probability of , any classical algorithm (whether deterministic or probabilistic)
will need to look at a minimum of names. Quantum mechanical systems can be in a
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a cost in computation time of at most a polynomial factol: It is not clear whether this is still true when quantum mechanics is taken into consider ..."
Abstract

Cited by 1111 (5 self)
 Add to MetaCart
into consideration. Several researchers, starting with David Deutsch, have developed models for quantum mechanical computers and have investigated their computational properties. This paper gives Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number
The Cache Performance and Optimizations of Blocked Algorithms
 In Proceedings of the Fourth International Conference on Architectural Support for Programming Languages and Operating Systems
, 1991
"... Blocking is a wellknown optimization technique for improving the effectiveness of memory hierarchies. Instead of operating on entire rows or columns of an array, blocked algorithms operate on submatrices or blocks, so that data loaded into the faster levels of the memory hierarchy are reused. This ..."
Abstract

Cited by 574 (5 self)
 Add to MetaCart
Blocking is a wellknown optimization technique for improving the effectiveness of memory hierarchies. Instead of operating on entire rows or columns of an array, blocked algorithms operate on submatrices or blocks, so that data loaded into the faster levels of the memory hierarchy are reused
An Overview of Evolutionary Algorithms in Multiobjective Optimization
 Evolutionary Computation
, 1995
"... The application of evolutionary algorithms (EAs) in multiobjective optimization is currently receiving growing interest from researchers with various backgrounds. Most research in this area has understandably concentrated on the selection stage of EAs, due to the need to integrate vectorial performa ..."
Abstract

Cited by 492 (13 self)
 Add to MetaCart
The application of evolutionary algorithms (EAs) in multiobjective optimization is currently receiving growing interest from researchers with various backgrounds. Most research in this area has understandably concentrated on the selection stage of EAs, due to the need to integrate vectorial
A Limited Memory Algorithm for Bound Constrained Optimization
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1994
"... An algorithm for solving large nonlinear optimization problems with simple bounds is described. It is based ..."
Abstract

Cited by 572 (9 self)
 Add to MetaCart
An algorithm for solving large nonlinear optimization problems with simple bounds is described. It is based
Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization
, 1993
"... The paper describes a rankbased fitness assignment method for Multiple Objective Genetic Algorithms (MOGAs). Conventional niche formation methods are extended to this class of multimodal problems and theory for setting the niche size is presented. The fitness assignment method is then modified to a ..."
Abstract

Cited by 633 (15 self)
 Add to MetaCart
to allow direct intervention of an external decision maker (DM). Finally, the MOGA is generalised further: the genetic algorithm is seen as the optimizing element of a multiobjective optimization loop, which also comprises the DM. It is the interaction between the two that leads to the determination of a
Results 1  10
of
108,035