Results 1  10
of
2,860,000
The Nature of Statistical Learning Theory
, 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract

Cited by 13236 (32 self)
 Add to MetaCart
Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based
Data Security
, 1979
"... The rising abuse of computers and increasing threat to personal privacy through data banks have stimulated much interest m the techmcal safeguards for data. There are four kinds of safeguards, each related to but distract from the others. Access controls regulate which users may enter the system and ..."
Abstract

Cited by 615 (3 self)
 Add to MetaCart
of statistical queries and correlating the responses. Statlstmal data banks are much less secure than most people beheve. Data encryption attempts to prevent unauthorized disclosure of confidential information in transit or m storage. This paper describes the general nature of controls of each type, the kinds
The fundamental properties of natural numbers
 Journal of Formalized Mathematics
, 1989
"... Summary. Some fundamental properties of addition, multiplication, order relations, exact division, the remainder, divisibility, the least common multiple, the greatest common divisor are presented. A proof of Euclid algorithm is also given. MML Identifier:NAT_1. WWW:http://mizar.org/JFM/Vol1/nat_1.h ..."
Abstract

Cited by 688 (73 self)
 Add to MetaCart
number k holdsP[k] provided the following conditions are satisfied: • P[0], and • For every natural number k such thatP[k] holdsP[k+1]. Let n, k be natural numbers. Then n · k is a natural number. Let n, k be natural numbers. Observe that n · k is natural. Next we state several propositions: (18) 2 0 ≤ i
Synchronous data flow
, 1987
"... Data flow is a natural paradigm for describing DSP applications for concurrent implementation on parallel hardware. Data flow programs for signal processing are directed graphs where each node represents a function and each arc represents a signal path. Synchronous data flow (SDF) is a special case ..."
Abstract

Cited by 622 (45 self)
 Add to MetaCart
Data flow is a natural paradigm for describing DSP applications for concurrent implementation on parallel hardware. Data flow programs for signal processing are directed graphs where each node represents a function and each arc represents a signal path. Synchronous data flow (SDF) is a special case
Weighted Voting for Replicated Data
, 1979
"... In a new algorithm for maintaining replicated data, every copy of a replicated file is assigned some number of votes. Every transaction collects a read quorum of r votes to read a file, and a write quorum of w votes to write a file, such that r+w is greater than the total number number of votes assi ..."
Abstract

Cited by 598 (0 self)
 Add to MetaCart
In a new algorithm for maintaining replicated data, every copy of a replicated file is assigned some number of votes. Every transaction collects a read quorum of r votes to read a file, and a write quorum of w votes to write a file, such that r+w is greater than the total number number of votes
Bayesian Data Analysis
, 1995
"... I actually own a copy of Harold Jeffreys’s Theory of Probability but have only read small bits of it, most recently over a decade ago to confirm that, indeed, Jeffreys was not too proud to use a classical chisquared pvalue when he wanted to check the misfit of a model to data (Gelman, Meng and Ste ..."
Abstract

Cited by 2194 (63 self)
 Add to MetaCart
I actually own a copy of Harold Jeffreys’s Theory of Probability but have only read small bits of it, most recently over a decade ago to confirm that, indeed, Jeffreys was not too proud to use a classical chisquared pvalue when he wanted to check the misfit of a model to data (Gelman, Meng
Powerlaw distributions in empirical data
 ISSN 00361445. doi: 10.1137/ 070710111. URL http://dx.doi.org/10.1137/070710111
, 2009
"... Powerlaw distributions occur in many situations of scientific interest and have significant consequences for our understanding of natural and manmade phenomena. Unfortunately, the empirical detection and characterization of power laws is made difficult by the large fluctuations that occur in the t ..."
Abstract

Cited by 607 (7 self)
 Add to MetaCart
Powerlaw distributions occur in many situations of scientific interest and have significant consequences for our understanding of natural and manmade phenomena. Unfortunately, the empirical detection and characterization of power laws is made difficult by the large fluctuations that occur
Atmospheric Modeling, Data Assimilation and Predictability
, 2003
"... Numerical weather prediction (NWP) now provides major guidance in our daily weather forecast. The accuracy of NWP models has improved steadily since the first successful experiment made by Charney, Fj!rtoft and von Neuman (1950). During the past 50 years, a large number of technical papers and repor ..."
Abstract

Cited by 626 (33 self)
 Add to MetaCart
of data assimilation and predictability. It incorporates all aspects of environmental computer modeling including an historical overview of NWP, equations of motion and their approximations, a modern description of the methods to determine the initial conditions using weather observations and a clear
Laplacian Eigenmaps for Dimensionality Reduction and Data Representation
, 2003
"... One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a lowdimensional manifold embedded in a highdimensional space. Drawing on the correspondenc ..."
Abstract

Cited by 1226 (15 self)
 Add to MetaCart
One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a lowdimensional manifold embedded in a highdimensional space. Drawing
Longitudinal data analysis using generalized linear models”.
 Biometrika,
, 1986
"... SUMMARY This paper proposes an extension of generalized linear models to the analysis of longitudinal data. We introduce a class of estimating equations that give consistent estimates of the regression parameters and of their variance under mild assumptions about the time dependence. The estimating ..."
Abstract

Cited by 1526 (8 self)
 Add to MetaCart
SUMMARY This paper proposes an extension of generalized linear models to the analysis of longitudinal data. We introduce a class of estimating equations that give consistent estimates of the regression parameters and of their variance under mild assumptions about the time dependence
Results 1  10
of
2,860,000