Results 1  10
of
67,751
Greedy Randomized Adaptive Search Procedures
, 2002
"... GRASP is a multistart metaheuristic for combinatorial problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search phas ..."
Abstract

Cited by 647 (82 self)
 Add to MetaCart
phase. The best overall solution is kept as the result. In this chapter, we first describe the basic components of GRASP. Successful implementation techniques and parameter tuning strategies are discussed and illustrated by numerical results obtained for different applications. Enhanced or alternative
Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media
 IEEE Trans. Antennas and Propagation
, 1966
"... The characteristics of the waves guided along a plane [I] P. S. Epstein, “On the possibility of electromagnetic surface waves, ” Proc. Nat’l dcad. Sciences, vol. 40, pp. 11581165, Deinterface which separates a semiinfinite region of free cember 1954. space from that of a magnetoionic medium are in ..."
Abstract

Cited by 1048 (0 self)
 Add to MetaCart
The characteristics of the waves guided along a plane [I] P. S. Epstein, “On the possibility of electromagnetic surface waves, ” Proc. Nat’l dcad. Sciences, vol. 40, pp. 11581165, Deinterface which separates a semiinfinite region of free cember 1954. space from that of a magnetoionic medium are investi [2] T. Tamir and A. A. Oliner, “The spectrum of electromagnetic waves guided by a plasma layer, ” Proc. IEEE, vol. 51, pp. 317gated for the case in which the static magnetic field is 332, February 1963. oriented perpendicular to the plane interface. It is [3] &I. A. Gintsburg, “Surface waves on the boundary of a plasma in a magnetic field, ” Rasprost. Radwvoln i Ionosf., Trudy found that surface waves exist only when w,<wp and NIZMIRAN L’SSR, no. 17(27), pp. 208215, 1960. that also only for angular frequencies which lie bet\\een [4] S. R. Seshadri and A. Hessel, “Radiation from a source near a plane interface between an isotropic and a gyrotropic dielectric,” we and 1/42 times the upper hybrid resonant frequency. Canad. J. Phys., vol. 42, pp. 21532172, November 1964. The surface waves propagate with a phase velocity [5] G. H. Owpang and S. R. Seshadri, “Guided waves propagating along the magnetostatic field at a plane boundary of a semiwhich is always less than the velocity of electromagnetic infinite magnetoionic medium, ” IEEE Trans. on Miomave waves in free space. The attenuation rates normal to the Tbory and Techniques, vol. MTT14, pp. 136144, March 1966. [6] S. R. Seshadri and T. T. \Vu, “Radiation condition for a maginterface of the surface wave fields in both the media are netoionic medium. ” to be Dublished. examined. Kumerical results of the surface wave characteristics are given for one typical case.
Numerical Solutions of the Euler Equations by Finite Volume Methods Using RungeKutta TimeStepping Schemes
, 1981
"... A new combination of a finite volume discretization in conjunction with carefully designed dissipative terms of third order, and a Runge Kutta time stepping scheme, is shown to yield an effective method for solving the Euler equations in arbitrary geometric domains. The method has been used to deter ..."
Abstract

Cited by 517 (78 self)
 Add to MetaCart
A new combination of a finite volume discretization in conjunction with carefully designed dissipative terms of third order, and a Runge Kutta time stepping scheme, is shown to yield an effective method for solving the Euler equations in arbitrary geometric domains. The method has been used to determine the steady transonic flow past an airfoil using an O mesh. Convergence to a steady state is accelerated by the use of a variable time step determined by the local Courant member, and the introduction of a forcing term proportional to the difference between the local total enthalpy and its free stream value.
An iterative method for the solution of the eigenvalue problem of linear differential and integral
, 1950
"... The present investigation designs a systematic method for finding the latent roots and the principal axes of a matrix, without reducing the order of the matrix. It is characterized by a wide field of applicability and great accuracy, since the accumulation of rounding errors is avoided, through the ..."
Abstract

Cited by 537 (0 self)
 Add to MetaCart
the process of "minimized iterations". Moreover, the method leads to a well convergent successive approximation procedure by which the solution of integral equations of the Fredholm type and the solution of the eigenvalue problem of linear differential and integral operators may be accomplished. I.
Closedform solution of absolute orientation using unit quaternions
 J. Opt. Soc. Am. A
, 1987
"... Finding the relationship between two coordinate systems using pairs of measurements of the coordinates of a number of points in both systems is a classic photogrammetric task. It finds applications in stereophotogrammetry and in robotics. I present here a closedform solution to the leastsquares pr ..."
Abstract

Cited by 989 (4 self)
 Add to MetaCart
squares problem for three or more points. Currently various empirical, graphical, and numerical iterative methods are in use. Derivation of the solution is simplified by use of unit quaternions to represent rotation. I emphasize a symmetry property that a solution to this problem ought to possess. The best
Guaranteed minimumrank solutions of linear matrix equations via nuclear norm minimization,”
 SIAM Review,
, 2010
"... Abstract The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and col ..."
Abstract

Cited by 562 (20 self)
 Add to MetaCart
for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds
An Efficient Solution to the FivePoint Relative Pose Problem
, 2004
"... An efficient algorithmic solution to the classical fivepoint relative pose problem is presented. The problem is to find the possible solutions for relative camera pose between two calibrated views given five corresponding points. The algorithm consists of computing the coefficients of a tenth degre ..."
Abstract

Cited by 484 (13 self)
 Add to MetaCart
An efficient algorithmic solution to the classical fivepoint relative pose problem is presented. The problem is to find the possible solutions for relative camera pose between two calibrated views given five corresponding points. The algorithm consists of computing the coefficients of a tenth
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 653 (21 self)
 Add to MetaCart
An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable
Decoding by Linear Programming
, 2004
"... This paper considers the classical error correcting problem which is frequently discussed in coding theory. We wish to recover an input vector f ∈ Rn from corrupted measurements y = Af + e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible to rec ..."
Abstract

Cited by 1399 (16 self)
 Add to MetaCart
for some ρ> 0. In short, f can be recovered exactly by solving a simple convex optimization problem (which one can recast as a linear program). In addition, numerical experiments suggest that this recovery procedure works unreasonably well; f is recovered exactly even in situations where a significant
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
 J. COMP. PHYS
, 1981
"... Several numerical schemes for the solution of hyperbolic conservation laws are based on exploiting the information obtained by considering a sequence of Riemann problems. It is argued that in existing schemes much of this information is degraded, and that only certain features of the exact solution ..."
Abstract

Cited by 1010 (2 self)
 Add to MetaCart
Several numerical schemes for the solution of hyperbolic conservation laws are based on exploiting the information obtained by considering a sequence of Riemann problems. It is argued that in existing schemes much of this information is degraded, and that only certain features of the exact solution
Results 1  10
of
67,751