Results 1  10
of
804,864
OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings
, 2012
"... An oblivious subspace embedding (OSE) given some parameters ε, d is a distribution D over matrices Π ∈ R m×n such that for any linear subspace W ⊆ R n with dim(W) = d it holds that PΠ∼D(∀x ∈ W ‖Πx‖2 ∈ (1 ± ε)‖x‖2)> 2/3. We show an OSE exists with m = O(d 2 /ε 2) and where every Π in the support ..."
Abstract

Cited by 29 (7 self)
 Add to MetaCart
An oblivious subspace embedding (OSE) given some parameters ε, d is a distribution D over matrices Π ∈ R m×n such that for any linear subspace W ⊆ R n with dim(W) = d it holds that PΠ∼D(∀x ∈ W ‖Πx‖2 ∈ (1 ± ε)‖x‖2)> 2/3. We show an OSE exists with m = O(d 2 /ε 2) and where every Π in the support
Distributed Dense Numerical Linear Algebra Algorithms on massively parallel architectures: DPLASMA
, 2013
"... to PLASMA, that operates in the distributed memory regime. It uses a new generic distributed Direct Acyclic Graph engine for high performance computing (DAGuE). Our work also takes advantage of some of the features of DAGuE, such as DAG representation that is independent of problemsize, overlapping ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
concise and synthetic format which it can be interpret and then execute in a distributed environment. We consider three common dense linear algebra algorithms, namely: Cholesky, LU and QR factorizations, to investigate their data driven expression and execution in a distributed system. We demonstrate from
Distibuted Dense Numerical Linear Algebra Algorithms on massively parallel architectures: DPLASMA
"... Abstract—We present DPLASMA, a new project related to PLASMA, that operates in the distributed memory regime. It uses a new generic distributed Direct Acyclic Graph engine for high performance computing (DAGuE). Our work also takes advantage of some of the features of DAGuE, such as DAG representati ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
of translating a sequential nestedloop code into a concise and synthetic format which it can be interpret and then execute in a distributed environment. We consider three common dense linear algebra algorithms, namely: Cholesky, LU and QR factorizations, to investigate their data driven expression and execution
doi:10.1155/2007/87046 Research Article Design and Implementation of Numerical Linear Algebra Algorithms on Fixed Point DSPs
"... Numerical linear algebra algorithms use the inherent elegance of matrix formulations and are usually implemented using C/C++ floating point representation. The system implementation is faced with practical constraints because these algorithms usually need to run in real time on fixed point digital s ..."
Abstract
 Add to MetaCart
Numerical linear algebra algorithms use the inherent elegance of matrix formulations and are usually implemented using C/C++ floating point representation. The system implementation is faced with practical constraints because these algorithms usually need to run in real time on fixed point digital
Parallel Numerical Linear Algebra
, 1993
"... We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of parallel processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We illust ..."
Abstract

Cited by 766 (23 self)
 Add to MetaCart
We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of parallel processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We
The geometry of algorithms with orthogonality constraints
 SIAM J. MATRIX ANAL. APPL
, 1998
"... In this paper we develop new Newton and conjugate gradient algorithms on the Grassmann and Stiefel manifolds. These manifolds represent the constraints that arise in such areas as the symmetric eigenvalue problem, nonlinear eigenvalue problems, electronic structures computations, and signal proces ..."
Abstract

Cited by 642 (1 self)
 Add to MetaCart
processing. In addition to the new algorithms, we show how the geometrical framework gives penetrating new insights allowing us to create, understand, and compare algorithms. The theory proposed here provides a taxonomy for numerical linear algebra algorithms that provide a top level mathematical view
An Extended Set of Fortran Basic Linear Algebra Subprograms
 ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE
, 1986
"... This paper describes an extension to the set of Basic Linear Algebra Subprograms. The extensions are targeted at matrixvector operations which should provide for efficient and portable implementations of algorithms for high performance computers. ..."
Abstract

Cited by 526 (72 self)
 Add to MetaCart
This paper describes an extension to the set of Basic Linear Algebra Subprograms. The extensions are targeted at matrixvector operations which should provide for efficient and portable implementations of algorithms for high performance computers.
Using Linear Algebra for Intelligent Information Retrieval
 SIAM REVIEW
, 1995
"... Currently, most approaches to retrieving textual materials from scientific databases depend on a lexical match between words in users' requests and those in or assigned to documents in a database. Because of the tremendous diversity in the words people use to describe the same document, lexical ..."
Abstract

Cited by 672 (18 self)
 Add to MetaCart
Currently, most approaches to retrieving textual materials from scientific databases depend on a lexical match between words in users' requests and those in or assigned to documents in a database. Because of the tremendous diversity in the words people use to describe the same document, lexical methods are necessarily incomplete and imprecise. Using the singular value decomposition (SVD), one can take advantage of the implicit higherorder structure in the association of terms with documents by determining the SVD of large sparse term by document matrices. Terms and documents represented by 200300 of the largest singular vectors are then matched against user queries. We call this retrieval method Latent Semantic Indexing (LSI) because the subspace represents important associative relationships between terms and documents that are not evident in individual documents. LSI is a completely automatic yet intelligent indexing method, widely applicable, and a promising way to improve users...
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 649 (21 self)
 Add to MetaCart
gradient algorithms, indicating that I~QR is the most reliable algorithm when A is illconditioned. Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: ApprorJmationleast squares approximation; G.1.3 [Numerical Analysis]: Numerical Linear Algebralinear systems (direct and
Results 1  10
of
804,864