Results 1  10
of
150,561
Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems
 Journal of the ACM
, 1998
"... Abstract. We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c Ͼ 1 and given any n nodes in 2 , a randomized version of the scheme finds a (1 ϩ 1/c)approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. When the nodes ..."
Abstract

Cited by 397 (2 self)
 Add to MetaCart
to Christofides) achieves a 3/2approximation in polynomial time. We also give similar approximation schemes for some other NPhard Euclidean problems: Minimum Steiner Tree, kTSP, and kMST. (The running times of the algorithm for kTSP and kMST involve an additional multiplicative factor k.) The previous best
Minimum Weight Euclidean tspanner is NPhard
, 2012
"... Given a set P of points in the plane, an Euclidean tspanner for P is a geometric graph that preserves the Euclidean distances between every pair of points in P up to a constant factor t. The weight of a geometric graph refers to the total length of its edges. In this paper we show that the problem ..."
Abstract
 Add to MetaCart
that the problem of deciding whether there exists an Euclidean tspanner, for a given set of points in the plane, of weight at most w is NPhard for every real constant t> 1, both whether planarity of the tspanner is required or not.
Proof verification and hardness of approximation problems
 IN PROC. 33RD ANN. IEEE SYMP. ON FOUND. OF COMP. SCI
, 1992
"... We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probabilit ..."
Abstract

Cited by 797 (39 self)
 Add to MetaCart
in the proof (though this number is a very slowly growing function of the input length). As a consequence we prove that no MAX SNPhard problem has a polynomial time approximation scheme, unless NP=P. The class MAX SNP was defined by Papadimitriou and Yannakakis [82] and hard problems for this class include
Where the REALLY Hard Problems Are
 IN J. MYLOPOULOS AND R. REITER (EDS.), PROCEEDINGS OF 12TH INTERNATIONAL JOINT CONFERENCE ON AI (IJCAI91),VOLUME 1
, 1991
"... It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard p ..."
Abstract

Cited by 683 (1 self)
 Add to MetaCart
It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard
Guaranteed minimumrank solutions of linear matrix equations via nuclear norm minimization,”
 SIAM Review,
, 2010
"... Abstract The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and col ..."
Abstract

Cited by 562 (20 self)
 Add to MetaCart
, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NPhard, because it contains vector cardinality minimization as a special case. In this paper, we show that if a certain restricted isometry property holds
The Planar kmeans Problem is NPhard
, 2009
"... In the kmeans problem, we are given a finite set S of points in ℜ m, and integer k ≥ 1, and we want to find k points (centers) so as to minimize the sum of the square of the Euclidean distance of each point in S to its nearest center. We show that this wellknown problem is NPhard even for instanc ..."
Abstract

Cited by 45 (0 self)
 Add to MetaCart
In the kmeans problem, we are given a finite set S of points in ℜ m, and integer k ≥ 1, and we want to find k points (centers) so as to minimize the sum of the square of the Euclidean distance of each point in S to its nearest center. We show that this wellknown problem is NPhard even
A Threshold of ln n for Approximating Set Cover
 JOURNAL OF THE ACM
, 1998
"... Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhar ..."
Abstract

Cited by 776 (5 self)
 Add to MetaCart
Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhard
Learning Bayesian Networks is NPHard
, 1994
"... Algorithms for learning Bayesian networks from data have two components: a scoring metric and a search procedure. The scoring metric computes a score reflecting the goodnessoffit of the structure to the data. The search procedure tries to identify network structures with high scores. Heckerman et ..."
Abstract

Cited by 194 (2 self)
 Add to MetaCart
al. (1994) introduced a Bayesian metric, called the BDe metric, that computes the relative posterior probability of a network structure given data. They show that the metric has a property desireable for inferring causal structure from data. In this paper, we show that the problem of deciding whether
Maximizing the Spread of Influence Through a Social Network
 In KDD
, 2003
"... Models for the processes by which ideas and influence propagate through a social network have been studied in a number of domains, including the diffusion of medical and technological innovations, the sudden and widespread adoption of various strategies in gametheoretic settings, and the effects of ..."
Abstract

Cited by 990 (7 self)
 Add to MetaCart
, and the goal is to trigger a large cascade of further adoptions, which set of individuals should we target? We consider this problem in several of the most widely studied models in social network analysis. The optimization problem of selecting the most influential nodes is NPhard here, and we provide
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 775 (21 self)
 Add to MetaCart
Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information
Results 1  10
of
150,561