Results 1 - 10
of
6,149
Text Classification using String Kernels
"... We propose a novel approach for categorizing text documents based on the use of a special kernel. The kernel is an inner product in the feature space generated by all subsequences of length k. A subsequence is any ordered sequence of k characters occurring in the text though not necessarily contiguo ..."
Abstract
-
Cited by 495 (7 self)
- Add to MetaCart
We propose a novel approach for categorizing text documents based on the use of a special kernel. The kernel is an inner product in the feature space generated by all subsequences of length k. A subsequence is any ordered sequence of k characters occurring in the text though not necessarily
Extracting Relations from Large Plain-Text Collections
, 2000
"... Text documents often contain valuable structured data that is hidden in regular English sentences. This data is best exploited if available as a relational table that we could use for answering precise queries or for running data mining tasks. We explore a technique for extracting such tables fr ..."
Abstract
-
Cited by 494 (25 self)
- Add to MetaCart
introduces novel strategies for generating patterns and extracting tuples from plain-text documents. At each iteration of the extraction process, Snowball evaluates the quality of these patterns and tuples without human intervention, and keeps only the most reliable ones for the next iteration
Computing semantic relatedness using Wikipedia-based explicit semantic analysis
- In Proceedings of the 20th International Joint Conference on Artificial Intelligence
, 2007
"... Computing semantic relatedness of natural language texts requires access to vast amounts of common-sense and domain-specific world knowledge. We propose Explicit Semantic Analysis (ESA), a novel method that represents the meaning of texts in a high-dimensional space of concepts derived from Wikipedi ..."
Abstract
-
Cited by 562 (9 self)
- Add to MetaCart
Computing semantic relatedness of natural language texts requires access to vast amounts of common-sense and domain-specific world knowledge. We propose Explicit Semantic Analysis (ESA), a novel method that represents the meaning of texts in a high-dimensional space of concepts derived from
A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts
- PROCEEDINGS OF THE ACL
, 2004
"... Sentiment analysis seeks to identify the viewpoint(s) underlying a text span; an example application is classifying a movie review as “thumbs up” or “thumbs down”. To determine this sentiment polarity, we propose a novel machine-learning method that applies text-categorization techniques to just the ..."
Abstract
-
Cited by 618 (7 self)
- Add to MetaCart
Sentiment analysis seeks to identify the viewpoint(s) underlying a text span; an example application is classifying a movie review as “thumbs up” or “thumbs down”. To determine this sentiment polarity, we propose a novel machine-learning method that applies text-categorization techniques to just
Unsupervised Learning by Probabilistic Latent Semantic Analysis
- Machine Learning
, 2001
"... Abstract. This paper presents a novel statistical method for factor analysis of binary and count data which is closely related to a technique known as Latent Semantic Analysis. In contrast to the latter method which stems from linear algebra and performs a Singular Value Decomposition of co-occurren ..."
Abstract
-
Cited by 618 (4 self)
- Add to MetaCart
Abstract. This paper presents a novel statistical method for factor analysis of binary and count data which is closely related to a technique known as Latent Semantic Analysis. In contrast to the latter method which stems from linear algebra and performs a Singular Value Decomposition of co
Probabilistic Latent Semantic Analysis
- In Proc. of Uncertainty in Artificial Intelligence, UAI’99
, 1999
"... Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of two--mode and co-occurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent Sema ..."
Abstract
-
Cited by 771 (9 self)
- Add to MetaCart
Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of two--mode and co-occurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent
Probabilistic Latent Semantic Indexing
, 1999
"... Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized ..."
Abstract
-
Cited by 1225 (10 self)
- Add to MetaCart
Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized
Image Inpainting
, 2000
"... Inpainting, the technique of modifying an image in an undetectable form, is as ancient as art itself. The goals and applications of inpainting are numerous, from the restoration of damaged paintings and photographs to the removal/replacement of selected objects. In this paper, we introduce a novel a ..."
Abstract
-
Cited by 531 (25 self)
- Add to MetaCart
Inpainting, the technique of modifying an image in an undetectable form, is as ancient as art itself. The goals and applications of inpainting are numerous, from the restoration of damaged paintings and photographs to the removal/replacement of selected objects. In this paper, we introduce a novel
Estimation of probabilities from sparse data for the language model component of a speech recognizer
- IEEE Transactions on Acoustics, Speech and Signal Processing
, 1987
"... Abstract-The description of a novel type of rn-gram language model is given. The model offers, via a nonlinear recursive procedure, a com-putation and space efficient solution to the problem of estimating prob-abilities from sparse data. This solution compares favorably to other proposed methods. Wh ..."
Abstract
-
Cited by 799 (2 self)
- Add to MetaCart
Abstract-The description of a novel type of rn-gram language model is given. The model offers, via a nonlinear recursive procedure, a com-putation and space efficient solution to the problem of estimating prob-abilities from sparse data. This solution compares favorably to other proposed methods
Shape Matching and Object Recognition Using Shape Contexts
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solv- ing for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning transform ..."
Abstract
-
Cited by 1809 (21 self)
- Add to MetaCart
We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solv- ing for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning
Results 1 - 10
of
6,149