• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 19,762
Next 10 →

LLVM: A compilation framework for lifelong program analysis & transformation

by Chris Lattner, Vikram Adve , 2004
"... ... a compiler framework designed to support transparent, lifelong program analysis and transformation for arbitrary programs, by providing high-level information to compiler transformations at compile-time, link-time, run-time, and in idle time between runs. LLVM defines a common, low-level code re ..."
Abstract - Cited by 852 (20 self) - Add to MetaCart
... a compiler framework designed to support transparent, lifelong program analysis and transformation for arbitrary programs, by providing high-level information to compiler transformations at compile-time, link-time, run-time, and in idle time between runs. LLVM defines a common, low-level code

Manifold regularization: A geometric framework for learning from labeled and unlabeled examples

by Mikhail Belkin, Partha Niyogi, Vikas Sindhwani - JOURNAL OF MACHINE LEARNING RESEARCH , 2006
"... We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semi-supervised framework that incorporates labeled and unlabeled data in a general-purpose learner. Some transductive graph learning al ..."
Abstract - Cited by 578 (16 self) - Add to MetaCart
We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semi-supervised framework that incorporates labeled and unlabeled data in a general-purpose learner. Some transductive graph learning

Cognitive networks

by Ryan W. Thomas, Luiz A. DaSilva, Allen B. MacKenzie - IN PROC. OF IEEE DYSPAN 2005 , 2005
"... This paper presents a definition and framework for a novel type of adaptive data network: the cognitive network. In a cognitive network, the collection of elements that make up the network observes network conditions and then, using prior knowledge gained from previous interactions with the network ..."
Abstract - Cited by 1106 (7 self) - Add to MetaCart
This paper presents a definition and framework for a novel type of adaptive data network: the cognitive network. In a cognitive network, the collection of elements that make up the network observes network conditions and then, using prior knowledge gained from previous interactions

Shape Matching and Object Recognition Using Shape Contexts

by Serge Belongie, Jitendra Malik, Jan Puzicha - IEEE Transactions on Pattern Analysis and Machine Intelligence , 2001
"... We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solv- ing for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning transform ..."
Abstract - Cited by 1809 (21 self) - Add to MetaCart
We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solv- ing for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning

Establishing Pairwise Keys in Distributed Sensor Networks

by Donggang Liu, Peng Ning , 2003
"... Pairwise key establishment is a fundamental security service in sensor networks; it enables sensor nodes to communicate securely with each other using cryptographic techniques. However, due to the resource constraints on sensors, it is infeasible to use traditional key management techniques such as ..."
Abstract - Cited by 543 (29 self) - Add to MetaCart
such as public key cryptography and key distribution center (KDC). To facilitate the study of novel pairwise key predistribution techniques, this paper presents a general framework for establishing pairwise keys between sensors on the basis of a polynomial-based key predistribution protocol [2]. This paper

Pictorial Structures for Object Recognition

by Pedro F. Felzenszwalb, Daniel P. Huttenlocher - IJCV , 2003
"... In this paper we present a statistical framework for modeling the appearance of objects. Our work is motivated by the pictorial structure models introduced by Fischler and Elschlager. The basic idea is to model an object by a collection of parts arranged in a deformable configuration. The appearance ..."
Abstract - Cited by 816 (15 self) - Add to MetaCart
In this paper we present a statistical framework for modeling the appearance of objects. Our work is motivated by the pictorial structure models introduced by Fischler and Elschlager. The basic idea is to model an object by a collection of parts arranged in a deformable configuration

On Sequential Monte Carlo Sampling Methods for Bayesian Filtering

by Arnaud Doucet, Simon Godsill, Christophe Andrieu - STATISTICS AND COMPUTING , 2000
"... In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and non-Gaussian. A general importance sampling framework is develop ..."
Abstract - Cited by 1051 (76 self) - Add to MetaCart
In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and non-Gaussian. A general importance sampling framework

Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm

by Yongyue Zhang, Michael Brady, Stephen Smith - IEEE TRANSACTIONS ON MEDICAL. IMAGING , 2001
"... The finite mixture (FM) model is the most commonly used model for statistical segmentation of brain magnetic resonance (MR) images because of its simple mathematical form and the piecewise constant nature of ideal brain MR images. However, being a histogram-based model, the FM has an intrinsic limi ..."
Abstract - Cited by 639 (15 self) - Add to MetaCart
-based methods produce unreliable results. In this paper, we propose a novel hidden Markov random field (HMRF) model, which is a stochastic process generated by a MRF whose state sequence cannot be observed directly but which can be indirectly estimated through observations. Mathematically, it can be shown

Recognizing action at a distance

by Alexei A. Efros, Alexander C. Berg, Greg Mori, Jitendra Malik - PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION , 2003
"... Our goal is to recognize human actions at a distance, at resolutions where a whole person may be, say, 30 pixels tall. We introduce a novel motion descriptor based on optical flow measurements in a spatio-temporal volume for each stabilized human figure, and an associated similarity measure to be us ..."
Abstract - Cited by 504 (20 self) - Add to MetaCart
Our goal is to recognize human actions at a distance, at resolutions where a whole person may be, say, 30 pixels tall. We introduce a novel motion descriptor based on optical flow measurements in a spatio-temporal volume for each stabilized human figure, and an associated similarity measure

A framework for learning predictive structures from multiple tasks and unlabeled data

by Rie Kubota Ando, Tong Zhang - JOURNAL OF MACHINE LEARNING RESEARCH , 2005
"... One of the most important issues in machine learning is whether one can improve the performance of a supervised learning algorithm by including unlabeled data. Methods that use both labeled and unlabeled data are generally referred to as semi-supervised learning. Although a number of such methods ar ..."
Abstract - Cited by 443 (3 self) - Add to MetaCart
are proposed, at the current stage, we still don’t have a complete understanding of their effectiveness. This paper investigates a closely related problem, which leads to a novel approach to semi-supervised learning. Specifically we consider learning predictive structures on hypothesis spaces (that is, what
Next 10 →
Results 1 - 10 of 19,762
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University