Results 1  10
of
445,986
A Singular Value Thresholding Algorithm for Matrix Completion
, 2008
"... This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of reco ..."
Abstract

Cited by 553 (21 self)
 Add to MetaCart
This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task
KSVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation
, 2006
"... In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signalatoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and inc ..."
Abstract

Cited by 940 (41 self)
 Add to MetaCart
by either selecting one from a prespecified set of linear transforms or adapting the dictionary to a set of training signals. Both of these techniques have been considered, but this topic is largely still open. In this paper we propose a novel algorithm for adapting dictionaries in order to achieve sparse
Novel ALgorithms for . . .
, 2005
"... Sensitivity analysis attacks constitute a known family of watermark “removal” attacks exploiting a vulnerability in some watermarking protocols: the attacker’s unlimited access to the watermark detector. In this work, novel attacks on additive spread spectrum schemes are designed. We first examine a ..."
Abstract
 Add to MetaCart
Sensitivity analysis attacks constitute a known family of watermark “removal” attacks exploiting a vulnerability in some watermarking protocols: the attacker’s unlimited access to the watermark detector. In this work, novel attacks on additive spread spectrum schemes are designed. We first examine
A new learning algorithm for blind signal separation

, 1996
"... A new online learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number of ..."
Abstract

Cited by 620 (80 self)
 Add to MetaCart
of the sources. The GramCharlier expansion instead of the Edgeworth expansion is used in evaluating the MI. The natural gradient approach is used to minimize the MI. A novel activation function is proposed for the online learning algorithm which has an equivariant property and is easily implemented on a neural
gSpan: GraphBased Substructure Pattern Mining
, 2002
"... We investigate new approaches for frequent graphbased pattern mining in graph datasets and propose a novel algorithm called gSpan (graphbased Substructure pattern mining) , which discovers frequent substructures without candidate generation. gSpan builds a new lexicographic order among graphs, and ..."
Abstract

Cited by 649 (34 self)
 Add to MetaCart
We investigate new approaches for frequent graphbased pattern mining in graph datasets and propose a novel algorithm called gSpan (graphbased Substructure pattern mining) , which discovers frequent substructures without candidate generation. gSpan builds a new lexicographic order among graphs
A Highly Adaptive Distributed Routing Algorithm for Mobile Wireless Networks
, 1997
"... We present a new distributed routing protocol for mobile, multihop, wireless networks. The protocol is one of a family of protocols which we term "link reversal" algorithms. The protocol's reaction is structured as a temporallyordered sequence of diffusing computations; each computat ..."
Abstract

Cited by 1096 (6 self)
 Add to MetaCart
" of the distributed algorithm. This capability is unique among protocols which are stable in the face of network partitions, and results in the protocol's high degree of adaptivity. This desirable behavior is achieved through the novel use of a "physical or logical clock" to establish the "
Planning and acting in partially observable stochastic domains
 ARTIFICIAL INTELLIGENCE
, 1998
"... In this paper, we bring techniques from operations research to bear on the problem of choosing optimal actions in partially observable stochastic domains. We begin by introducing the theory of Markov decision processes (mdps) and partially observable mdps (pomdps). We then outline a novel algorithm ..."
Abstract

Cited by 1096 (38 self)
 Add to MetaCart
In this paper, we bring techniques from operations research to bear on the problem of choosing optimal actions in partially observable stochastic domains. We begin by introducing the theory of Markov decision processes (mdps) and partially observable mdps (pomdps). We then outline a novel algorithm
Efficient sparse coding algorithms
 In NIPS
, 2007
"... Sparse coding provides a class of algorithms for finding succinct representations of stimuli; given only unlabeled input data, it discovers basis functions that capture higherlevel features in the data. However, finding sparse codes remains a very difficult computational problem. In this paper, we ..."
Abstract

Cited by 445 (14 self)
 Add to MetaCart
present efficient sparse coding algorithms that are based on iteratively solving two convex optimization problems: an L1regularized least squares problem and an L2constrained least squares problem. We propose novel algorithms to solve both of these optimization problems. Our algorithms result in a
Results 1  10
of
445,986