Results 1  10
of
952,300
A Sieve Algorithm for the Shortest Lattice Vector Problem
, 2001
"... We present a randomized 2 O(n) time algorithm to compute a shortest nonzero vector in an ndimensional rational lattice. The best known time upper bound for this problem was 2 O(n log n) ..."
Abstract

Cited by 212 (3 self)
 Add to MetaCart
We present a randomized 2 O(n) time algorithm to compute a shortest nonzero vector in an ndimensional rational lattice. The best known time upper bound for this problem was 2 O(n log n)
Tensor network nonzero testing
, 2014
"... Tensor networks are a central tool in condensed matter physics. In this paper, we initiate the study of tensor network nonzero testing (TNZ): Given a tensor network T, does T represent a nonzero vector? We show that TNZ is not in the PolynomialTime Hierarchy unless the hierarchy collapses. We nex ..."
Abstract
 Add to MetaCart
Tensor networks are a central tool in condensed matter physics. In this paper, we initiate the study of tensor network nonzero testing (TNZ): Given a tensor network T, does T represent a nonzero vector? We show that TNZ is not in the PolynomialTime Hierarchy unless the hierarchy collapses. We
LIBSVM: a Library for Support Vector Machines
, 2001
"... LIBSVM is a library for support vector machines (SVM). Its goal is to help users can easily use SVM as a tool. In this document, we present all its implementation details. 1 ..."
Abstract

Cited by 6287 (82 self)
 Add to MetaCart
LIBSVM is a library for support vector machines (SVM). Its goal is to help users can easily use SVM as a tool. In this document, we present all its implementation details. 1
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract

Cited by 958 (5 self)
 Add to MetaCart
vector machine' (RVM), a model of identical functional form to the popular and stateoftheart `support vector machine' (SVM). We demonstrate that by exploiting a probabilistic Bayesian learning framework, we can derive accurate prediction models which typically utilise dramatically fewer
Training Support Vector Machines: an Application to Face Detection
, 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract

Cited by 728 (1 self)
 Add to MetaCart
We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision
Distance Vector Multicast Routing Protocol
 RFC 1075, BBN
, 1988
"... This RFC describes a distancevectorstyle routing protocol for routing multicast datagrams through an internet. It is derived from the Routing Information Protocol (RIP) [1], and implements multicasting as described in RFC1054. This is an experimental protocol, and its implementation is not recomm ..."
Abstract

Cited by 477 (3 self)
 Add to MetaCart
This RFC describes a distancevectorstyle routing protocol for routing multicast datagrams through an internet. It is derived from the Routing Information Protocol (RIP) [1], and implements multicasting as described in RFC1054. This is an experimental protocol, and its implementation
Making LargeScale Support Vector Machine Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract

Cited by 620 (1 self)
 Add to MetaCart
Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large
Results 1  10
of
952,300