Results 11  20
of
1,157,743
A Fast and Elitist MultiObjective Genetic Algorithm: NSGAII
, 2000
"... Multiobjective evolutionary algorithms which use nondominated sorting and sharing have been mainly criticized for their (i) O(MN computational complexity (where M is the number of objectives and N is the population size), (ii) nonelitism approach, and (iii) the need for specifying a sharing param ..."
Abstract

Cited by 1707 (58 self)
 Add to MetaCart
to solve constrained multiobjective problems eciently. Simulation results of the constrained NSGAII on a number of test problems, including a fiveobjective, sevenconstraint nonlinear problem, are compared with another constrained multiobjective optimizer and much better performance of NSGA
Studies of transformation of Escherichia coli with plasmids
 J. Mol. Biol
, 1983
"... Factors that affect he probability of genetic transformation f Escherichia coli by plasmids have been evaluated. A set of conditions is described under which about one in every 400 plasmid molecules produces a transformed cell. These conditions include cell growth in medium containing elevated level ..."
Abstract

Cited by 1609 (1 self)
 Add to MetaCart
probabilities. Nontransforming DNAs compete consistent with mass. No significant variation is observed between competing DNAs of difi~rent source, complexity, length or form. Competition with both transforming and nontransforming plasmids indicates that each cell is capable of taking up many DNA molecules
Mixtures of Probabilistic Principal Component Analysers
, 1998
"... Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a com ..."
Abstract

Cited by 537 (6 self)
 Add to MetaCart
Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a
Bundle Adjustment  A Modern Synthesis
 VISION ALGORITHMS: THEORY AND PRACTICE, LNCS
, 2000
"... This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics c ..."
Abstract

Cited by 555 (12 self)
 Add to MetaCart
covered include: the choice of cost function and robustness; numerical optimization including sparse Newton methods, linearly convergent approximations, updating and recursive methods; gauge (datum) invariance; and quality control. The theory is developed for general robust cost functions rather than
Orthonormal bases of compactly supported wavelets
, 1993
"... Several variations are given on the construction of orthonormal bases of wavelets with compact support. They have, respectively, more symmetry, more regularity, or more vanishing moments for the scaling function than the examples constructed in Daubechies [Comm. Pure Appl. Math., 41 (1988), pp. 90 ..."
Abstract

Cited by 2182 (27 self)
 Add to MetaCart
Several variations are given on the construction of orthonormal bases of wavelets with compact support. They have, respectively, more symmetry, more regularity, or more vanishing moments for the scaling function than the examples constructed in Daubechies [Comm. Pure Appl. Math., 41 (1988), pp
Why Do Some Countries Produce So Much More Output Per Worker Than Others?
, 1998
"... Output per worker varies enormously across countries. Why? On an accounting basis, our analysis shows that differences in physical capital and educational attainment can only partially explain the variation in output per worker — we find a large amount of variation in the level of the Solow residual ..."
Abstract

Cited by 2363 (22 self)
 Add to MetaCart
Output per worker varies enormously across countries. Why? On an accounting basis, our analysis shows that differences in physical capital and educational attainment can only partially explain the variation in output per worker — we find a large amount of variation in the level of the Solow
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract

Cited by 958 (5 self)
 Add to MetaCart
This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance
By Force of Habit: A ConsumptionBased Explanation of Aggregate Stock Market Behavior
, 1999
"... We present a consumptionbased model that explains a wide variety of dynamic asset pricing phenomena, including the procyclical variation of stock prices, the longhorizon predictability of excess stock returns, and the countercyclical variation of stock market volatility. The model captures much of ..."
Abstract

Cited by 1427 (68 self)
 Add to MetaCart
We present a consumptionbased model that explains a wide variety of dynamic asset pricing phenomena, including the procyclical variation of stock prices, the longhorizon predictability of excess stock returns, and the countercyclical variation of stock market volatility. The model captures much
Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1996
"... We present a novel statistical and variational approach to image segmentation based on a new algorithm named region competition. This algorithm is derived by minimizing a generalized Bayes/MDL criterion using the variational principle. The algorithm is guaranteed to converge to a local minimum and c ..."
Abstract

Cited by 778 (21 self)
 Add to MetaCart
We present a novel statistical and variational approach to image segmentation based on a new algorithm named region competition. This algorithm is derived by minimizing a generalized Bayes/MDL criterion using the variational principle. The algorithm is guaranteed to converge to a local minimum
Linear spatial pyramid matching using sparse coding for image classification
 in IEEE Conference on Computer Vision and Pattern Recognition(CVPR
, 2009
"... Recently SVMs using spatial pyramid matching (SPM) kernel have been highly successful in image classification. Despite its popularity, these nonlinear SVMs have a complexity O(n 2 ∼ n 3) in training and O(n) in testing, where n is the training size, implying that it is nontrivial to scaleup the algo ..."
Abstract

Cited by 488 (19 self)
 Add to MetaCart
Recently SVMs using spatial pyramid matching (SPM) kernel have been highly successful in image classification. Despite its popularity, these nonlinear SVMs have a complexity O(n 2 ∼ n 3) in training and O(n) in testing, where n is the training size, implying that it is nontrivial to scaleup
Results 11  20
of
1,157,743