Results 1  10
of
43,191
DECOMPOSITION ALGORITHM APPLIED TO NONLINEAR OPTIMIZATION PROBLEMS„
"... Decomposition algorithm applied to nonlinear optimization ..."
Comparative Study of Firefly Algorithm and Particle Swarm Optimization for Noisy Non Linear Optimization Problems
"... Abstract — There are various noisy nonlinear mathematical optimization problems that can be effectively solved by Metaheuristic Algorithms. These are iterative search processes that efficiently perform the exploration and exploitation in the solution space, aiming to efficiently find near optimal s ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Abstract — There are various noisy nonlinear mathematical optimization problems that can be effectively solved by Metaheuristic Algorithms. These are iterative search processes that efficiently perform the exploration and exploitation in the solution space, aiming to efficiently find near optimal
EM323: a line search based algorithm for solving highdimensional continuous nonlinear optimization problems
 SOFT COMPUT
, 2010
"... ..."
Training Linear SVMs in Linear Time
, 2006
"... Linear Support Vector Machines (SVMs) have become one of the most prominent machine learning techniques for highdimensional sparse data commonly encountered in applications like text classification, wordsense disambiguation, and drug design. These applications involve a large number of examples n ..."
Abstract

Cited by 549 (6 self)
 Add to MetaCart
as well as a large number of features N, while each example has only s << N nonzero features. This paper presents a CuttingPlane Algorithm for training linear SVMs that provably has training time O(sn) for classification problems and O(sn log(n)) for ordinal regression problems. The algorithm
Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ¹ minimization
 PROC. NATL ACAD. SCI. USA 100 2197–202
, 2002
"... Given a ‘dictionary’ D = {dk} of vectors dk, we seek to represent a signal S as a linear combination S = ∑ k γ(k)dk, with scalar coefficients γ(k). In particular, we aim for the sparsest representation possible. In general, this requires a combinatorial optimization process. Previous work considered ..."
Abstract

Cited by 633 (38 self)
 Add to MetaCart
optimization problem: specifically, minimizing the ℓ¹ norm of the coefficients γ. In this paper, we obtain parallel results in a more general setting, where the dictionary D can arise from two or several bases, frames, or even less structured systems. We introduce the Spark, ameasure of linear dependence
Global Optimization with Polynomials and the Problem of Moments
 SIAM JOURNAL ON OPTIMIZATION
, 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear ma ..."
Abstract

Cited by 577 (48 self)
 Add to MetaCart
We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear
Linear pattern matching algorithms
 IN PROCEEDINGS OF THE 14TH ANNUAL IEEE SYMPOSIUM ON SWITCHING AND AUTOMATA THEORY. IEEE
, 1972
"... In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching in linear time. Related problems, such as those discussed in [4], have previously been solved by efficient but suboptimal algorithms. In this paper, we introduce an interesting data structure called a bitree. A linear ti ..."
Abstract

Cited by 546 (0 self)
 Add to MetaCart
In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching in linear time. Related problems, such as those discussed in [4], have previously been solved by efficient but suboptimal algorithms. In this paper, we introduce an interesting data structure called a bitree. A linear
Lambertian Reflectance and Linear Subspaces
, 2000
"... We prove that the set of all reflectance functions (the mapping from surface normals to intensities) produced by Lambertian objects under distant, isotropic lighting lies close to a 9D linear subspace. This implies that, in general, the set of images of a convex Lambertian object obtained under a wi ..."
Abstract

Cited by 526 (20 self)
 Add to MetaCart
the effects of Lambertian materials as the analog of a convolution. These results allow us to construct algorithms for object recognition based on linear methods as well as algorithms that use convex optimization to enforce nonnegative lighting functions. Finally, we show a simple way to enforce non
Decoding by Linear Programming
, 2004
"... This paper considers the classical error correcting problem which is frequently discussed in coding theory. We wish to recover an input vector f ∈ Rn from corrupted measurements y = Af + e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible to rec ..."
Abstract

Cited by 1399 (16 self)
 Add to MetaCart
for some ρ> 0. In short, f can be recovered exactly by solving a simple convex optimization problem (which one can recast as a linear program). In addition, numerical experiments suggest that this recovery procedure works unreasonably well; f is recovered exactly even in situations where a significant
Some optimal inapproximability results
, 2002
"... We prove optimal, up to an arbitrary ffl? 0, inapproximability results for MaxEkSat for k * 3, maximizing the number of satisfied linear equations in an overdetermined system of linear equations modulo a prime p and Set Splitting. As a consequence of these results we get improved lower bounds for ..."
Abstract

Cited by 751 (11 self)
 Add to MetaCart
We prove optimal, up to an arbitrary ffl? 0, inapproximability results for MaxEkSat for k * 3, maximizing the number of satisfied linear equations in an overdetermined system of linear equations modulo a prime p and Set Splitting. As a consequence of these results we get improved lower bounds
Results 1  10
of
43,191