Results 1  10
of
111,758
A Theoretical and Empirical Study of a NoiseTolerant Algorithm to Learn Geometric Patterns (Extended Abstract)
 PROC. 13TH INT. CONF. MACHINE LEARNING
, 1996
"... Developing the ability to recognize a landmark from a visual image of a robot's current location is a fundamental problem in robotics. We describe a way in which the landmark matching problem can be mapped to that of learning a onedimensional geometric pattern. We present an efficient noiseto ..."
Abstract

Cited by 10 (6 self)
 Add to MetaCart
noisetolerant algorithm (designed using the statistical query model) to PAClearn the class of onedimensional geometric patterns. Then we report results from an initial empirical study of our algorithm that provides at least some evidence that statistical query algorithms may be valuable for use in practice.
Efficient noisetolerant learning from statistical queries
 JOURNAL OF THE ACM
, 1998
"... In this paper, we study the problem of learning in the presence of classification noise in the probabilistic learning model of Valiant and its variants. In order to identify the class of “robust” learning algorithms in the most general way, we formalize a new but related model of learning from stat ..."
Abstract

Cited by 357 (5 self)
 Add to MetaCart
’s model and its variants can also be learned in the new model (and thus can be learned in the presence of noise). A notable exception to this statement is the class of parity functions, which we prove is not learnable from statistical queries, and for which no noisetolerant algorithm is known.
Noisetolerant learning, the parity problem, and the statistical query model
 J. ACM
"... We describe a slightly subexponential time algorithm for learning parity functions in the presence of random classification noise. This results in a polynomialtime algorithm for the case of parity functions that depend on only the first O(log n log log n) bits of input. This is the first known ins ..."
Abstract

Cited by 164 (2 self)
 Add to MetaCart
instance of an efficient noisetolerant algorithm for a concept class that is provably not learnable in the Statistical Query model of Kearns [7]. Thus, we demonstrate that the set of problems learnable in the statistical query model is a strict subset of those problems learnable in the presence of noise
NoiseTolerant Windowing
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1998
"... Windowing has been proposed as a procedure for efficient memory use in the ID3 decision tree learning algorithm. However, it was shown that it may often lead to a decrease in performance, in particular in noisy domains. Following up on previous work, where we have demonstrated that the ability of ru ..."
Abstract

Cited by 28 (4 self)
 Add to MetaCart
of rule learning algorithms to learn rules independently can be exploited for more efficient windowing procedures, we demonstrate in this paper how this property can be exploited to achieve noisetolerance in windowing.
Instancebased learning algorithms
 Machine Learning
, 1991
"... Abstract. Storing and using specific instances improves the performance of several supervised learning algorithms. These include algorithms that learn decision trees, classification rules, and distributed networks. However, no investigation has analyzed algorithms that use only specific instances to ..."
Noisetolerant learning, the parity problem, and the Statistical Query model
, 2003
"... We describe a slightly subexponential time algorithm for learning parity functions in the presence of random classification noise. This results in a polynomialtime algorithm for the case of parity functions that depend on only the first O(log n log log n) bits of input. This is the first known ins ..."
Abstract
 Add to MetaCart
instance of an efficient noisetolerant algorithm for a concept class that is provably not learnable in the Statistical Query model of Kearns [7]. Thus, we demonstrate that the set of problems learnable in the statistical query model is a strict subset of those problems learnable in the presence of noise
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
The CN2 Induction Algorithm
 MACHINE LEARNING
, 1989
"... Systems for inducing concept descriptions from examples are valuable tools for assisting in the task of knowledge acquisition for expert systems. This paper presents a description and empirical evaluation of a new induction system, cn2, designed for the efficient induction of simple, comprehensib ..."
Abstract

Cited by 884 (6 self)
 Add to MetaCart
, comprehensible production rules in domains where problems of poor description language and/or noise may be present. Implementations of the cn2, id3 and aq algorithms are compared on three medical classification tasks.
A learning algorithm for Boltzmann machines
 Cognitive Science
, 1985
"... The computotionol power of massively parallel networks of simple processing elements resides in the communication bandwidth provided by the hardware connections between elements. These connections con allow a significant fraction of the knowledge of the system to be applied to an instance of a probl ..."
Abstract

Cited by 586 (13 self)
 Add to MetaCart
to a general learning rule for modifying the connection strengths so as to incorporate knowledge obout o task domain in on efficient way. We describe some simple examples in which the learning algorithm creates internal representations thot ore demonstrobly the most efficient way of using
Results 1  10
of
111,758