• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 309
Next 10 →

The Penn Treebank: Annotating Predicate Argument Structure

by Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert Macintyre, Ann Bies, Mark Ferguson, Karen Katz, Britta Schasberger - In ARPA Human Language Technology Workshop , 1994
"... The Penn Treebank has recently implemented a new syntactic annotation scheme, designed to highlight aspects of predicate-argument structure. This paper discusses the implementation of crucial aspects of this new annotation scheme. It incorporates a more consistent treatment of a wide range of gramma ..."
Abstract - Cited by 349 (4 self) - Add to MetaCart
The Penn Treebank has recently implemented a new syntactic annotation scheme, designed to highlight aspects of predicate-argument structure. This paper discusses the implementation of crucial aspects of this new annotation scheme. It incorporates a more consistent treatment of a wide range

Probabilistic Part-of-Speech Tagging Using Decision Trees

by Helmut Schmid , 1994
"... In this paper, a new probabilistic tagging method is presented which avoids problems that Markov Model based taggers face, when they have to estimate transition probabilities from sparse data. In this tagging method, transition probabilities are estimated using a decision tree. Based on this method, ..."
Abstract - Cited by 1058 (9 self) - Add to MetaCart
In this paper, a new probabilistic tagging method is presented which avoids problems that Markov Model based taggers face, when they have to estimate transition probabilities from sparse data. In this tagging method, transition probabilities are estimated using a decision tree. Based on this method

Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network

by Kristina Toutanova , Dan Klein, Christopher D. Manning, Yoram Singer - IN PROCEEDINGS OF HLT-NAACL , 2003
"... We present a new part-of-speech tagger that demonstrates the following ideas: (i) explicit use of both preceding and following tag contexts via a dependency network representation, (ii) broad use of lexical features, including jointly conditioning on multiple consecutive words, (iii) effective ..."
Abstract - Cited by 693 (23 self) - Add to MetaCart
We present a new part-of-speech tagger that demonstrates the following ideas: (i) explicit use of both preceding and following tag contexts via a dependency network representation, (ii) broad use of lexical features, including jointly conditioning on multiple consecutive words, (iii

A Maximum-Entropy-Inspired Parser

by Eugene Charniak , 1999
"... We present a new parser for parsing down to Penn tree-bank style parse trees that achieves 90.1% average precision/recall for sentences of length 40 and less, and 89.5% for sentences of length 100 and less when trained and tested on the previously established [5,9,10,15,17] "stan- dard" se ..."
Abstract - Cited by 971 (19 self) - Add to MetaCart
We present a new parser for parsing down to Penn tree-bank style parse trees that achieves 90.1% average precision/recall for sentences of length 40 and less, and 89.5% for sentences of length 100 and less when trained and tested on the previously established [5,9,10,15,17] "stan- dard

Text Chunking using Transformation-Based Learning

by Lance A. Ramshaw, Mitchell P. Marcus , 1995
"... Eric Brill introduced transformation-based learning and showed that it can do part-ofspeech tagging with fairly high accuracy. The same method can be applied at a higher level of textual interpretation for locating chunks in the tagged text, including non-recursive "baseNP" chunks. For ..."
Abstract - Cited by 523 (0 self) - Add to MetaCart
. For this purpose, it is convenient to view chunking as a tagging problem by encoding the chunk structure in new tags attached to each word. In automatic tests using Treebank-derived data, this technique achieved recall and precision rates of roughly 92% for baseNP chunks and 88% for somewhat more complex chunks

Learning Accurate, Compact, and Interpretable Tree Annotation

by Slav Petrov, Leon Barrett, Romain Thibaux, Dan Klein - In ACL ’06 , 2006
"... We present an automatic approach to tree annotation in which basic nonterminal symbols are alternately split and merged to maximize the likelihood of a training treebank. Starting with a simple Xbar grammar, we learn a new grammar whose nonterminals are subsymbols of the original nonterminals. In co ..."
Abstract - Cited by 423 (42 self) - Add to MetaCart
We present an automatic approach to tree annotation in which basic nonterminal symbols are alternately split and merged to maximize the likelihood of a training treebank. Starting with a simple Xbar grammar, we learn a new grammar whose nonterminals are subsymbols of the original nonterminals

Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank

by Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng, Christopher Potts
"... Semantic word spaces have been very useful but cannot express the meaning of longer phrases in a principled way. Further progress towards understanding compositionality in tasks such as sentiment detection requires richer supervised training and evaluation resources and more powerful models of compo ..."
Abstract - Cited by 191 (7 self) - Add to MetaCart
of composition. To remedy this, we introduce a Sentiment Treebank. It includes fine grained sentiment labels for 215,154 phrases in the parse trees of 11,855 sentences and presents new challenges for sentiment compositionality. To address them, we introduce the Recursive Neural Tensor Network. When trained

The IULA Treebank

by Montserrat Marimon, Beatriz Fisas, Núria Bel, Blanca Arias, Silvia Vázquez, Jorge Vivaldi, Sergi Torner, Marta Villegas, Mercè Lorente
"... This paper describes on-going work for the construction of a new treebank for Spanish, The IULA Treebank. This new resource will contain about 60,000 richly annotated sentences as an extension of the already existing IULA Technical Corpus which is only PoS tagged. In this paper we have focused on de ..."
Abstract - Cited by 3 (1 self) - Add to MetaCart
This paper describes on-going work for the construction of a new treebank for Spanish, The IULA Treebank. This new resource will contain about 60,000 richly annotated sentences as an extension of the already existing IULA Technical Corpus which is only PoS tagged. In this paper we have focused

Three New Probabilistic Models for Dependency Parsing: An Exploration

by Jason M. Eisner , 1996
"... After presenting a novel O(n³) parsing algorithm for dependency grammar, we develop three contrasting ways to stochasticize it. We propose (a) a lexical affinity model where words struggle to modify each other, (b) a sense tagging model where words fluctuate randomly in their selectional prefe ..."
Abstract - Cited by 318 (14 self) - Add to MetaCart
Journal training text (derived from the Penn Treebank). In these results, the generative model performs significantly better than the others, and does about equally well at assigning part-of-speech tags.

Discriminative Reranking for Natural Language Parsing

by Michael Collins, Terry Koo , 2005
"... This article considers approaches which rerank the output of an existing probabilistic parser. The base parser produces a set of candidate parses for each input sentence, with associated probabilities that define an initial ranking of these parses. A second model then attempts to improve upon this i ..."
Abstract - Cited by 333 (9 self) - Add to MetaCart
takes these features into account. We introduce a new method for the reranking task, based on the boosting approach to ranking problems described in Freund et al. (1998). We apply the boosting method to parsing the Wall Street Journal treebank. The method combined the log-likelihood under a baseline
Next 10 →
Results 1 - 10 of 309
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University