Results 1  10
of
2,877,052
The Nature of Statistical Learning Theory
, 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract

Cited by 12976 (32 self)
 Add to MetaCart
Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based
Expected Time Bounds for Selection
, 1975
"... A new selection algorithm is presented which is shown to be very efficient on the average, both theoretically and practically. The number of comparisons used to select the ith smallest of n numbers is n q min(i,ni) q o(n). A lower bound within 9 percent of the above formula is also derived. ..."
Abstract

Cited by 466 (4 self)
 Add to MetaCart
A new selection algorithm is presented which is shown to be very efficient on the average, both theoretically and practically. The number of comparisons used to select the ith smallest of n numbers is n q min(i,ni) q o(n). A lower bound within 9 percent of the above formula is also derived.
Theoretical improvements in algorithmic efficiency for network flow problems

, 1972
"... This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimumcost flow problem. Upper bounds on ... the numbers of steps in these algorithms are derived, and are shown to compale favorably with upper bounds on the numbers of steps req ..."
Abstract

Cited by 565 (0 self)
 Add to MetaCart
This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimumcost flow problem. Upper bounds on ... the numbers of steps in these algorithms are derived, and are shown to compale favorably with upper bounds on the numbers of steps
Data Integration: A Theoretical Perspective
 Symposium on Principles of Database Systems
, 2002
"... Data integration is the problem of combining data residing at different sources, and providing the user with a unified view of these data. The problem of designing data integration systems is important in current real world applications, and is characterized by a number of issues that are interestin ..."
Abstract

Cited by 944 (45 self)
 Add to MetaCart
that are interesting from a theoretical point of view. This document presents on overview of the material to be presented in a tutorial on data integration. The tutorial is focused on some of the theoretical issues that are relevant for data integration. Special attention will be devoted to the following aspects
A Limited Memory Algorithm for Bound Constrained Optimization
 SIAM Journal on Scientific Computing
, 1994
"... An algorithm for solving large nonlinear optimization problems with simple bounds is described. ..."
Abstract

Cited by 557 (9 self)
 Add to MetaCart
An algorithm for solving large nonlinear optimization problems with simple bounds is described.
Plans And ResourceBounded Practical Reasoning
 COMPUTATIONAL INTELLIGENCE, 4(4):349355, 1988
, 1988
"... An architecture for a rational agent must allow for meansend reasoning, for the weighing of competing alternatives, and for interactions between these two forms of reasoning. Such an architecture must also address the problem of resource boundedness. We sketch a solution of the first problem that p ..."
Abstract

Cited by 485 (19 self)
 Add to MetaCart
that points the way to a solution of the second. In particular, we present a highlevel specification of the practicalreasoning component of an architecture for a resourcebounded rational agent. In this architecture, a major role of the agent's plans is to constrain the amount of further practical
Assessing coping strategies: A theoretically based approach
 Journal of Personality and Social Psychology
, 1989
"... We developed a multidimensional coping inventory to assess the different ways in which people respond to stress. Five scales (of four items each) measure conceptually distinct aspects of problemfocused coping (active coping, planning, suppression of competing activities, restraint coping, seeking ..."
Abstract

Cited by 610 (5 self)
 Add to MetaCart
of emotions, behavioral disengagement, mental disengagement). Study 1 reports the development of scale items. Study 2 reports correlations between the various coping scales and several theoretically relevant personality measures in an effort to provide preliminary information about the inventory
DecisionTheoretic Planning: Structural Assumptions and Computational Leverage
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1999
"... Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives ..."
Abstract

Cited by 510 (4 self)
 Add to MetaCart
Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives adopted in these areas often differ in substantial ways, many planning problems of interest to researchers in these fields can be modeled as Markov decision processes (MDPs) and analyzed using the techniques of decision theory. This paper presents an overview and synthesis of MDPrelated methods, showing how they provide a unifying framework for modeling many classes of planning problems studied in AI. It also describes structural properties of MDPs that, when exhibited by particular classes of problems, can be exploited in the construction of optimal or approximately optimal policies or plans. Planning problems commonly possess structure in the reward and value functions used to de...
Maxmargin Markov networks
, 2003
"... In typical classification tasks, we seek a function which assigns a label to a single object. Kernelbased approaches, such as support vector machines (SVMs), which maximize the margin of confidence of the classifier, are the method of choice for many such tasks. Their popularity stems both from the ..."
Abstract

Cited by 594 (15 self)
 Add to MetaCart
for learning M 3 networks based on a compact quadratic program formulation. We provide a new theoretical bound for generalization in structured domains. Experiments on the task of handwritten character recognition and collective hypertext classification demonstrate very significant gains over previous
Results 1  10
of
2,877,052