• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 16,257
Next 10 →

Three Generative, Lexicalised Models for Statistical Parsing

by Michael Collins , 1997
"... In this paper we first propose a new statistical parsing model, which is a generative model of lexicalised context-free gram- mar. We then extend the model to in- clude a probabilistic treatment of both subcategorisation and wh~movement. Results on Wall Street Journal text show that the parse ..."
Abstract - Cited by 570 (8 self) - Add to MetaCart
In this paper we first propose a new statistical parsing model, which is a generative model of lexicalised context-free gram- mar. We then extend the model to in- clude a probabilistic treatment of both subcategorisation and wh~movement. Results on Wall Street Journal text show

Head-Driven Statistical Models for Natural Language Parsing

by Michael Collins , 1999
"... ..."
Abstract - Cited by 1158 (15 self) - Add to MetaCart
Abstract not found

A New Statistical Parser Based on Bigram Lexical Dependencies

by Michael John Collins , 1996
"... This paper describes a new statistical parser which is based on probabilities of dependencies between head-words in the parse tree. Standard bigram probability estimation techniques are extended to calculate probabilities of dependencies between pairs of words. Tests using Wall Street Journal ..."
Abstract - Cited by 490 (4 self) - Add to MetaCart
This paper describes a new statistical parser which is based on probabilities of dependencies between head-words in the parse tree. Standard bigram probability estimation techniques are extended to calculate probabilities of dependencies between pairs of words. Tests using Wall Street

Statistical phrase-based translation

by Franz Josef Och, Daniel Marcu , 2003
"... We propose a new phrase-based translation model and decoding algorithm that enables us to evaluate and compare several, previously proposed phrase-based translation models. Within our framework, we carry out a large number of experiments to understand better and explain why phrase-based models outpe ..."
Abstract - Cited by 944 (11 self) - Add to MetaCart
We propose a new phrase-based translation model and decoding algorithm that enables us to evaluate and compare several, previously proposed phrase-based translation models. Within our framework, we carry out a large number of experiments to understand better and explain why phrase-based models

Statistical Decision-Tree Models for Parsing

by David M. Magerman - In Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics , 1995
"... Syntactic natural language parsers have shown themselves to be inadequate for processing highly-ambiguous large-vocabulary text, as is evidenced by their poor per- formance on domains like the Wall Street Journal, and by the movement away from parsing-based approaches to textprocessing in gen ..."
Abstract - Cited by 367 (1 self) - Add to MetaCart
in general. In this paper, I describe SPATTER, a statistical parser based on decision-tree learning techniques which constructs a complete parse for every sentence and achieves accuracy rates far better than any published result. This work is based on the following premises: (1) grammars are too

Statistical Parsing with a Context-free Grammar and Word Statistics

by Eugene Charniak , 1997
"... We describe a parsing system based upon a language model for English that is, in turn, based upon assigning probabilities to possible parses for a sentence. This model is used in a parsing system by finding the parse for the sentence with the highest probability. This system outperforms previou ..."
Abstract - Cited by 414 (18 self) - Add to MetaCart
We describe a parsing system based upon a language model for English that is, in turn, based upon assigning probabilities to possible parses for a sentence. This model is used in a parsing system by finding the parse for the sentence with the highest probability. This system outperforms

Semantic similarity based on corpus statistics and lexical taxonomy

by Jay J. Jiang, David W. Conrath - Proc of 10th International Conference on Research in Computational Linguistics, ROCLING’97 , 1997
"... This paper presents a new approach for measuring semantic similarity/distance between words and concepts. It combines a lexical taxonomy structure with corpus statistical information so that the semantic distance between nodes in the semantic space constructed by the taxonomy can be better quantifie ..."
Abstract - Cited by 873 (0 self) - Add to MetaCart
This paper presents a new approach for measuring semantic similarity/distance between words and concepts. It combines a lexical taxonomy structure with corpus statistical information so that the semantic distance between nodes in the semantic space constructed by the taxonomy can be better

Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics

by Geir Evensen - J. Geophys. Res , 1994
"... . A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter. The ..."
Abstract - Cited by 800 (23 self) - Add to MetaCart
. A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter

Active Appearance Models.

by Timothy F Cootes , Gareth J Edwards , Christopher J Taylor - IEEE Transactions on Pattern Analysis and Machine Intelligence, , 2001
"... AbstractÐWe describe a new method of matching statistical models of appearance to images. A set of model parameters control modes of shape and gray-level variation learned from a training set. We construct an efficient iterative matching algorithm by learning the relationship between perturbations ..."
Abstract - Cited by 2154 (59 self) - Add to MetaCart
AbstractÐWe describe a new method of matching statistical models of appearance to images. A set of model parameters control modes of shape and gray-level variation learned from a training set. We construct an efficient iterative matching algorithm by learning the relationship between perturbations

The Dantzig selector: statistical estimation when p is much larger than n

by Emmanuel Candes, Terence Tao , 2005
"... In many important statistical applications, the number of variables or parameters p is much larger than the number of observations n. Suppose then that we have observations y = Ax + z, where x ∈ R p is a parameter vector of interest, A is a data matrix with possibly far fewer rows than columns, n ≪ ..."
Abstract - Cited by 879 (14 self) - Add to MetaCart
In many important statistical applications, the number of variables or parameters p is much larger than the number of observations n. Suppose then that we have observations y = Ax + z, where x ∈ R p is a parameter vector of interest, A is a data matrix with possibly far fewer rows than columns, n
Next 10 →
Results 1 - 10 of 16,257
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University