Results 1 - 10
of
66,406
The ant colony optimization meta-heuristic
- in New Ideas in Optimization
, 1999
"... Ant algorithms are multi-agent systems in which the behavior of each single agent, called artificial ant or ant for short in the following, is inspired by the behavior of real ants. Ant algorithms are one of the most successful examples of swarm intelligent systems [3], and have been applied to many ..."
Abstract
-
Cited by 389 (23 self)
- Add to MetaCart
Ant algorithms are multi-agent systems in which the behavior of each single agent, called artificial ant or ant for short in the following, is inspired by the behavior of real ants. Ant algorithms are one of the most successful examples of swarm intelligent systems [3], and have been applied to many types of problems, ranging from the classical traveling salesman
Ant algorithms for discrete optimization
- ARTIFICIAL LIFE
, 1999
"... This article presents an overview of recent work on ant algorithms, that is, algorithms for discrete optimization that took inspiration from the observation of ant colonies’ foraging behavior, and introduces the ant colony optimization (ACO) metaheuristic. In the first part of the article the basic ..."
Abstract
-
Cited by 489 (42 self)
- Add to MetaCart
This article presents an overview of recent work on ant algorithms, that is, algorithms for discrete optimization that took inspiration from the observation of ant colonies’ foraging behavior, and introduces the ant colony optimization (ACO) metaheuristic. In the first part of the article the basic
The Ant System: Optimization by a colony of cooperating agents
- IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B
, 1996
"... An analogy with the way ant colonies function has suggested the definition of a new computational paradigm, which we call Ant System. We propose it as a viable new approach to stochastic combinatorial optimization. The main characteristics of this model are positive feedback, distributed computation ..."
Abstract
-
Cited by 1300 (46 self)
- Add to MetaCart
An analogy with the way ant colonies function has suggested the definition of a new computational paradigm, which we call Ant System. We propose it as a viable new approach to stochastic combinatorial optimization. The main characteristics of this model are positive feedback, distributed
Dynamic programming algorithm optimization for spoken word recognition
- IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING
, 1978
"... This paper reports on an optimum dynamic programming (DP) based time-normalization algorithm for spoken word recognition. First, a general principle of time-normalization is given using timewarping function. Then, two time-normalized distance definitions, ded symmetric and asymmetric forms, are der ..."
Abstract
-
Cited by 788 (3 self)
- Add to MetaCart
, are derived from the principle. These two forms are compared with each other through theoretical discussions and experimental studies. The symmetric form algorithm superiority is established. A new technique, called slope constraint, is successfully introduced, in which the warping function slope
Fibonacci Heaps and Their Uses in Improved Network optimization algorithms
, 1987
"... In this paper we develop a new data structure for implementing heaps (priority queues). Our structure, Fibonacci heaps (abbreviated F-heaps), extends the binomial queues proposed by Vuillemin and studied further by Brown. F-heaps support arbitrary deletion from an n-item heap in qlogn) amortized tim ..."
Abstract
-
Cited by 739 (18 self)
- Add to MetaCart
In this paper we develop a new data structure for implementing heaps (priority queues). Our structure, Fibonacci heaps (abbreviated F-heaps), extends the binomial queues proposed by Vuillemin and studied further by Brown. F-heaps support arbitrary deletion from an n-item heap in qlogn) amortized
New results in linear filtering and prediction theory
- TRANS. ASME, SER. D, J. BASIC ENG
, 1961
"... A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary sta ..."
Abstract
-
Cited by 607 (0 self)
- Add to MetaCart
A nonlinear differential equation of the Riccati type is derived for the covariance matrix of the optimal filtering error. The solution of this "variance equation " completely specifies the optimal filter for either finite or infinite smoothing intervals and stationary or nonstationary
Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images
, 2001
"... In this paper we describe a new technique for general purpose interactive segmentation of N-dimensional images. The user marks certain pixels as “object” or “background” to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph ..."
Abstract
-
Cited by 1010 (20 self)
- Add to MetaCart
In this paper we describe a new technique for general purpose interactive segmentation of N-dimensional images. The user marks certain pixels as “object” or “background” to provide hard constraints for segmentation. Additional soft constraints incorporate both boundary and region information. Graph
A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR PROGRAMMING
- COMBINATORICA
, 1984
"... We present a new polynomial-time algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than the ell ..."
Abstract
-
Cited by 860 (3 self)
- Add to MetaCart
We present a new polynomial-time algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than
A New Extension of the Kalman Filter to Nonlinear Systems
, 1997
"... The Kalman filter(KF) is one of the most widely used methods for tracking and estimation due to its simplicity, optimality, tractability and robustness. However, the application of the KF to nonlinear systems can be difficult. The most common approach is to use the Extended Kalman Filter (EKF) which ..."
Abstract
-
Cited by 778 (6 self)
- Add to MetaCart
The Kalman filter(KF) is one of the most widely used methods for tracking and estimation due to its simplicity, optimality, tractability and robustness. However, the application of the KF to nonlinear systems can be difficult. The most common approach is to use the Extended Kalman Filter (EKF
Greedy Randomized Adaptive Search Procedures
, 2002
"... GRASP is a multi-start metaheuristic for combinatorial problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search phas ..."
Abstract
-
Cited by 647 (82 self)
- Add to MetaCart
-based intensification and post-optimization techniques using path-relinking. Hybridizations with other metaheuristics, parallelization strategies, and applications are also reviewed.
Results 1 - 10
of
66,406