Results 1 - 10
of
32,643
Non-Uniform Random Variate Generation
, 1986
"... This is a survey of the main methods in non-uniform random variate generation, and highlights recent research on the subject. Classical paradigms such as inversion, rejection, guide tables, and transformations are reviewed. We provide information on the expected time complexity of various algorith ..."
Abstract
-
Cited by 1021 (26 self)
- Add to MetaCart
This is a survey of the main methods in non-uniform random variate generation, and highlights recent research on the subject. Classical paradigms such as inversion, rejection, guide tables, and transformations are reviewed. We provide information on the expected time complexity of various
Generative communication in Linda
- ACM Transactions on Programming Languages and Systems
, 1985
"... Generative communication is the basis of a new distributed programming langauge that is intended for systems programming in distributed settings generally and on integrated network computers in particular. It differs from previous interprocess communication models in specifying that messages be adde ..."
Abstract
-
Cited by 1194 (2 self)
- Add to MetaCart
be added in tuple-structured form to the computation environment, where they exist as named, independent entities until some process chooses to receive them. Generative communication results in a number of distinguishing properties in the new language, Linda, that is built around it. Linda is fully
DART: Directed automated random testing
- In Programming Language Design and Implementation (PLDI
, 2005
"... We present a new tool, named DART, for automatically testing software that combines three main techniques: (1) automated extraction of the interface of a program with its external environment using static source-code parsing; (2) automatic generation of a test driver for this interface that performs ..."
Abstract
-
Cited by 843 (42 self)
- Add to MetaCart
that performs random testing to simulate the most general environment the program can operate in; and (3) dynamic analysis of how the program behaves under random testing and automatic generation of new test inputs to direct systematically the execution along alternative program paths. Together, these three
Random Key Predistribution Schemes for Sensor Networks”,
- IEEE Symposium on Security and Privacy,
, 2003
"... Abstract Efficient key distribution is the basis for providing secure communication, a necessary requirement for many emerging sensor network applications. Many applications require authentic and secret communication among neighboring sensor nodes. However, establishing keys for secure communicatio ..."
Abstract
-
Cited by 832 (12 self)
- Add to MetaCart
keys for all pairs of nodes is not viable due to the large number of sensors and the limited memory of sensor nodes. A new key distribution approach was proposed by Eschenauer and Gligor [11] to achieve secrecy for node-to-node communication: sensor nodes receive a random subset of keys from a key pool
Experiments with a New Boosting Algorithm
, 1996
"... In an earlier paper, we introduced a new “boosting” algorithm called AdaBoost which, theoretically, can be used to significantly reduce the error of any learning algorithm that consistently generates classifiers whose performance is a little better than random guessing. We also introduced the relate ..."
Abstract
-
Cited by 2213 (20 self)
- Add to MetaCart
In an earlier paper, we introduced a new “boosting” algorithm called AdaBoost which, theoretically, can be used to significantly reduce the error of any learning algorithm that consistently generates classifiers whose performance is a little better than random guessing. We also introduced
A New Method for Solving Hard Satisfiability Problems
- AAAI
, 1992
"... We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approac ..."
Abstract
-
Cited by 730 (21 self)
- Add to MetaCart
We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional
The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials,”
- Journal of the American Medical Association,
, 1987
"... To comprehend the results of a randomized, controlled trial (RCT), readers must understand its design, conduct, analysis, and interpretation. That goal can be achieved only through complete transparency from authors. Despite several decades of educational efforts, the reporting of RCTs needs improv ..."
Abstract
-
Cited by 787 (15 self)
- Add to MetaCart
To comprehend the results of a randomized, controlled trial (RCT), readers must understand its design, conduct, analysis, and interpretation. That goal can be achieved only through complete transparency from authors. Despite several decades of educational efforts, the reporting of RCTs needs
Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach
- DATA MINING AND KNOWLEDGE DISCOVERY
, 2004
"... Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still co ..."
Abstract
-
Cited by 1752 (64 self)
- Add to MetaCart
FP-tree-based mining adopts
a pattern-fragment growth method to avoid the costly generation of a large number of candidate sets, and (3) a
partitioning-based, divide-and-conquer method is used to decompose the mining task into a set of smaller tasks for
mining confined patterns in conditional
Boosting the margin: A new explanation for the effectiveness of voting methods
- IN PROCEEDINGS INTERNATIONAL CONFERENCE ON MACHINE LEARNING
, 1997
"... One of the surprising recurring phenomena observed in experiments with boosting is that the test error of the generated classifier usually does not increase as its size becomes very large, and often is observed to decrease even after the training error reaches zero. In this paper, we show that this ..."
Abstract
-
Cited by 897 (52 self)
- Add to MetaCart
that this phenomenon is related to the distribution of margins of the training examples with respect to the generated voting classification rule, where the margin of an example is simply the difference between the number of correct votes and the maximum number of votes received by any incorrect label. We show
CURE: An Efficient Clustering Algorithm for Large Data sets
- Published in the Proceedings of the ACM SIGMOD Conference
, 1998
"... Clustering, in data mining, is useful for discovering groups and identifying interesting distributions in the underlying data. Traditional clustering algorithms either favor clusters with spherical shapes and similar sizes, or are very fragile in the presence of outliers. We propose a new clustering ..."
Abstract
-
Cited by 722 (5 self)
- Add to MetaCart
clustering algorithm called CURE that is more robust to outliers, and identifies clusters having non-spherical shapes and wide variances in size. CURE achieves this by representing each cluster by a certain fixed number of points that are generated by selecting well scattered points from the cluster
Results 1 - 10
of
32,643