• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 113,529
Next 10 →

The Nature of Statistical Learning Theory

by Vladimir N. Vapnik , 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract - Cited by 13236 (32 self) - Add to MetaCart
Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based

Bottom-Up Relational Learning of Pattern Matching Rules for Information Extraction

by Mary Elaine Califf, Raymond J. Mooney, David Cohn , 2003
"... Information extraction is a form of shallow text processing that locates a specified set of relevant items in a natural-language document. Systems for this task require significant domain-specific knowledge and are time-consuming and difficult to build by hand, making them a good application for ..."
Abstract - Cited by 406 (20 self) - Add to MetaCart
for machine learning. We present an algorithm, RAPIER, that uses pairs of sample documents and filled templates to induce pattern-match rules that directly extract fillers for the slots in the template. RAPIER is a bottom-up learning algorithm that incorporates techniques from several inductive logic

An Efficient Context-Free Parsing Algorithm

by Jay Earley , 1970
"... A parsing algorithm which seems to be the most efficient general context-free algorithm known is described. It is similar to both Knuth's LR(k) algorithm and the familiar top-down algorithm. It has a time bound proportional to n 3 (where n is the length of the string being parsed) in general; i ..."
Abstract - Cited by 798 (0 self) - Add to MetaCart
; it has an n 2 bound for unambiguous grammars; and it runs in linear time on a large class of grammars, which seems to include most practical context-free programming language grammars. In an empirical comparison it appears to be superior to the top-down and bottom-up algorithms studied by Griffiths

Experiments with a New Boosting Algorithm

by Yoav Freund, Robert E. Schapire , 1996
"... In an earlier paper, we introduced a new “boosting” algorithm called AdaBoost which, theoretically, can be used to significantly reduce the error of any learning algorithm that consistently generates classifiers whose performance is a little better than random guessing. We also introduced the relate ..."
Abstract - Cited by 2213 (20 self) - Add to MetaCart
In an earlier paper, we introduced a new “boosting” algorithm called AdaBoost which, theoretically, can be used to significantly reduce the error of any learning algorithm that consistently generates classifiers whose performance is a little better than random guessing. We also introduced

A new learning algorithm for blind signal separation

by S. Amari, A. Cichocki, H. H. Yang - , 1996
"... A new on-line learning algorithm which minimizes a statistical de-pendency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual in-formation (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number of ..."
Abstract - Cited by 622 (80 self) - Add to MetaCart
A new on-line learning algorithm which minimizes a statistical de-pendency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual in-formation (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number

A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR PROGRAMMING

by N. Karmarkar - COMBINATORICA , 1984
"... We present a new polynomial-time algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than the ell ..."
Abstract - Cited by 860 (3 self) - Add to MetaCart
We present a new polynomial-time algorithm for linear programming. In the worst case, the algorithm requires O(tf'SL) arithmetic operations on O(L) bit numbers, where n is the number of variables and L is the number of bits in the input. The running,time of this algorithm is better than

The geometry of algorithms with orthogonality constraints

by Alan Edelman, Tomás A. Arias, Steven T. Smith - SIAM J. MATRIX ANAL. APPL , 1998
"... In this paper we develop new Newton and conjugate gradient algorithms on the Grassmann and Stiefel manifolds. These manifolds represent the constraints that arise in such areas as the symmetric eigenvalue problem, nonlinear eigenvalue problems, electronic structures computations, and signal proces ..."
Abstract - Cited by 640 (1 self) - Add to MetaCart
In this paper we develop new Newton and conjugate gradient algorithms on the Grassmann and Stiefel manifolds. These manifolds represent the constraints that arise in such areas as the symmetric eigenvalue problem, nonlinear eigenvalue problems, electronic structures computations, and signal

The CN2 Induction Algorithm

by Peter Clark , Tim Niblett - MACHINE LEARNING , 1989
"... Systems for inducing concept descriptions from examples are valuable tools for assisting in the task of knowledge acquisition for expert systems. This paper presents a description and empirical evaluation of a new induction system, cn2, designed for the efficient induction of simple, comprehensib ..."
Abstract - Cited by 890 (6 self) - Add to MetaCart
Systems for inducing concept descriptions from examples are valuable tools for assisting in the task of knowledge acquisition for expert systems. This paper presents a description and empirical evaluation of a new induction system, cn2, designed for the efficient induction of simple

Data Streams: Algorithms and Applications

by S. Muthukrishnan , 2005
"... In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerg ..."
Abstract - Cited by 533 (22 self) - Add to MetaCart
In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has

Efficient Variants of the ICP Algorithm

by Szymon Rusinkiewicz, Marc Levoy - INTERNATIONAL CONFERENCE ON 3-D DIGITAL IMAGING AND MODELING , 2001
"... The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of three-dimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points to the minim ..."
Abstract - Cited by 718 (5 self) - Add to MetaCart
The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of three-dimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points
Next 10 →
Results 1 - 10 of 113,529
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University