• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 21,913
Next 10 →

ANALYSIS OF WIRELESS SENSOR NETWORKS FOR HABITAT MONITORING

by Joseph Polastre, Robert Szewczyk, Alan Mainwaring, David Culler, John Anderson , 2004
"... We provide an in-depth study of applying wireless sensor networks (WSNs) to real-world habitat monitoring. A set of system design requirements were developed that cover the hardware design of the nodes, the sensor network software, protective enclosures, and system architecture to meet the require ..."
Abstract - Cited by 1490 (19 self) - Add to MetaCart
We provide an in-depth study of applying wireless sensor networks (WSNs) to real-world habitat monitoring. A set of system design requirements were developed that cover the hardware design of the nodes, the sensor network software, protective enclosures, and system architecture to meet

Resilient Overlay Networks

by David Andersen, Hari Balakrishnan, Frans Kaashoek, Robert Morris , 2001
"... A Resilient Overlay Network (RON) is an architecture that allows distributed Internet applications to detect and recover from path outages and periods of degraded performance within several seconds, improving over today’s wide-area routing protocols that take at least several minutes to recover. A R ..."
Abstract - Cited by 1160 (31 self) - Add to MetaCart
A Resilient Overlay Network (RON) is an architecture that allows distributed Internet applications to detect and recover from path outages and periods of degraded performance within several seconds, improving over today’s wide-area routing protocols that take at least several minutes to recover. A

The BSD Packet Filter: A New Architecture for User-level Packet Capture

by Steven Mccanne, Van Jacobson , 1992
"... Many versions of Unix provide facilities for user-level packet capture, making possible the use of general purpose workstations for network monitoring. Because network monitors run as user-level processes, packets must be copied across the kernel/user-space protection boundary. This copying can be m ..."
Abstract - Cited by 568 (2 self) - Add to MetaCart
Many versions of Unix provide facilities for user-level packet capture, making possible the use of general purpose workstations for network monitoring. Because network monitors run as user-level processes, packets must be copied across the kernel/user-space protection boundary. This copying can

A Key-Management Scheme for Distributed Sensor Networks

by Laurent Eschenauer, Virgil D. Gligor - In Proceedings of the 9th ACM Conference on Computer and Communications Security , 2002
"... Distributed Sensor Networks (DSNs) are ad-hoc mobile networks that include sensor nodes with limited computation and communication capabilities. DSNs are dynamic in the sense that they allow addition and deletion of sensor nodes after deployment to grow the network or replace failing and unreliable ..."
Abstract - Cited by 919 (11 self) - Add to MetaCart
Distributed Sensor Networks (DSNs) are ad-hoc mobile networks that include sensor nodes with limited computation and communication capabilities. DSNs are dynamic in the sense that they allow addition and deletion of sensor nodes after deployment to grow the network or replace failing and unreliable

Energy-efficient communication protocol for wireless microsensor networks

by Wendi Rabiner Heinzelman, Anantha Chandrakasan, Hari Balakrishnan , 2000
"... Wireless distributed microsensor systems will enable the reliable monitoring of a variety of environments for both civil and military applications. In this paper, we look at communication protocols, which can have significant impact on the overall energy dissipation of these networks. Based on our f ..."
Abstract - Cited by 2103 (10 self) - Add to MetaCart
Wireless distributed microsensor systems will enable the reliable monitoring of a variety of environments for both civil and military applications. In this paper, we look at communication protocols, which can have significant impact on the overall energy dissipation of these networks. Based on our

Energy Conserving Routing in Wireless Ad-hoc Networks

by Jae-hwan Chang, Leandros Tassiulas , 2000
"... An ad-hoc network of wireless static nodes is considered as it arises in a rapidly deployed, sensor based, monitoring system. Information is generated in certain nodes and needs to reach a set of designated gateway nodes. Each node may adjust its power within a certain range that determines the set ..."
Abstract - Cited by 622 (2 self) - Add to MetaCart
An ad-hoc network of wireless static nodes is considered as it arises in a rapidly deployed, sensor based, monitoring system. Information is generated in certain nodes and needs to reach a set of designated gateway nodes. Each node may adjust its power within a certain range that determines

An Energy-Efficient MAC Protocol for Wireless Sensor Networks

by Wei Ye, John Heidemann, Deborah Estrin , 2002
"... This paper proposes S-MAC, a medium-access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect senso ..."
Abstract - Cited by 1517 (36 self) - Add to MetaCart
This paper proposes S-MAC, a medium-access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect

Bro: A System for Detecting Network Intruders in Real-Time

by Vern Paxson , 1999
"... We describe Bro, a stand-alone system for detecting network intruders in real-time by passively monitoring a network link over which the intruder's traffic transits. We give an overview of the system's design, which emphasizes highspeed (FDDI-rate) monitoring, real-time notification, clear ..."
Abstract - Cited by 925 (42 self) - Add to MetaCart
We describe Bro, a stand-alone system for detecting network intruders in real-time by passively monitoring a network link over which the intruder's traffic transits. We give an overview of the system's design, which emphasizes highspeed (FDDI-rate) monitoring, real-time notification

Understanding packet delivery performance in dense wireless sensor networks

by Jerry Zhao , 2003
"... Wireless sensor networks promise fine-grain monitoring in a wide variety of environments. Many of these environments (e.g., indoor environments or habitats) can be harsh for wireless communication. From a networking perspective, the most basic aspect of wireless communication is the packet delivery ..."
Abstract - Cited by 661 (15 self) - Add to MetaCart
Wireless sensor networks promise fine-grain monitoring in a wide variety of environments. Many of these environments (e.g., indoor environments or habitats) can be harsh for wireless communication. From a networking perspective, the most basic aspect of wireless communication is the packet delivery

Versatile Low Power Media Access for Wireless Sensor Networks

by Joseph Polastre, Jason Hill, David Culler , 2004
"... We propose B-MAC, a carrier sense media access protocol for wireless sensor networks that provides a flexible interface to obtain ultra low power operation, effective collision avoidance, and high channel utilization. To achieve low power operation, B-MAC employs an adaptive preamble sampling scheme ..."
Abstract - Cited by 1099 (19 self) - Add to MetaCart
. We show that B-MAC’s flexibility results in better packet delivery rates, throughput, latency, and energy consumption than S-MAC. By deploying a real world monitoring application with multihop networking, we validate our protocol design and model. Our results illustrate the need for flexible
Next 10 →
Results 1 - 10 of 21,913
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University