Results 1  10
of
4,127
Teaching the Nearest Neighbor Search Problem in an Undergraduate Algorithm Analysis Course
"... The nearest neighbor search problem is an important problem in computer science that has a wide range of applications including medical image processing, pattern recognition, mobile computing, and retrieval of multimedia objects such as images, text, and videos over the Internet. The problem deserve ..."
Abstract
 Add to MetaCart
The nearest neighbor search problem is an important problem in computer science that has a wide range of applications including medical image processing, pattern recognition, mobile computing, and retrieval of multimedia objects such as images, text, and videos over the Internet. The problem
Nearest neighbor queries.
 ACM SIGMOD Record,
, 1995
"... Abstract A frequently encountered type of query in Geographic Information Systems is to nd the k nearest neighbor objects to a given point in space. Processing such queries requires substantially di erent search algorithms than those for location or range queries. In this paper we present a n e cie ..."
Abstract

Cited by 592 (1 self)
 Add to MetaCart
Abstract A frequently encountered type of query in Geographic Information Systems is to nd the k nearest neighbor objects to a given point in space. Processing such queries requires substantially di erent search algorithms than those for location or range queries. In this paper we present a n e
Fast approximate nearest neighbors with automatic algorithm configuration
 In VISAPP International Conference on Computer Vision Theory and Applications
, 2009
"... nearestneighbors search, randomized kdtrees, hierarchical kmeans tree, clustering. For many computer vision problems, the most time consuming component consists of nearest neighbor matching in highdimensional spaces. There are no known exact algorithms for solving these highdimensional problems ..."
Abstract

Cited by 455 (2 self)
 Add to MetaCart
nearestneighbors search, randomized kdtrees, hierarchical kmeans tree, clustering. For many computer vision problems, the most time consuming component consists of nearest neighbor matching in highdimensional spaces. There are no known exact algorithms for solving these high
An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions
 ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS
, 1994
"... Consider a set S of n data points in real ddimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any po ..."
Abstract

Cited by 984 (32 self)
 Add to MetaCart
Consider a set S of n data points in real ddimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any
Lower bounds for high dimensional nearest neighbor search and related problems
, 1999
"... In spite of extensive and continuing research, for various geometric search problems (such as nearest neighbor search), the best algorithms known have performance that degrades exponentially in the dimension. This phenomenon is sometimes called the curse of dimensionality. Recent results [38, 37, 40 ..."
Abstract

Cited by 55 (2 self)
 Add to MetaCart
In spite of extensive and continuing research, for various geometric search problems (such as nearest neighbor search), the best algorithms known have performance that degrades exponentially in the dimension. This phenomenon is sometimes called the curse of dimensionality. Recent results [38, 37
Distance metric learning for large margin nearest neighbor classification
 In NIPS
, 2006
"... We show how to learn a Mahanalobis distance metric for knearest neighbor (kNN) classification by semidefinite programming. The metric is trained with the goal that the knearest neighbors always belong to the same class while examples from different classes are separated by a large margin. On seven ..."
Abstract

Cited by 695 (14 self)
 Add to MetaCart
We show how to learn a Mahanalobis distance metric for knearest neighbor (kNN) classification by semidefinite programming. The metric is trained with the goal that the knearest neighbors always belong to the same class while examples from different classes are separated by a large margin
An Investigation of Practical ApproximateNearest Neighbor Algorithms
"... 1 Introduction The knearestneighbor searching problem is to find the k nearest points in a dataset X aeRD containing n points to a query point ..."
Abstract
 Add to MetaCart
1 Introduction The knearestneighbor searching problem is to find the k nearest points in a dataset X aeRD containing n points to a query point
Data Structures and Algorithms for Nearest Neighbor Search in General Metric Spaces
, 1993
"... We consider the computational problem of finding nearest neighbors in general metric spaces. Of particular interest are spaces that may not be conveniently embedded or approximated in Euclidian space, or where the dimensionality of a Euclidian representation is very high. Also relevant are highdim ..."
Abstract

Cited by 358 (5 self)
 Add to MetaCart
We consider the computational problem of finding nearest neighbors in general metric spaces. Of particular interest are spaces that may not be conveniently embedded or approximated in Euclidian space, or where the dimensionality of a Euclidian representation is very high. Also relevant are high
Nearoptimal hashing algorithms for approximate nearest neighbor in high dimensions
, 2008
"... In this article, we give an overview of efficient algorithms for the approximate and exact nearest neighbor problem. The goal is to preprocess a dataset of objects (e.g., images) so that later, given a new query object, one can quickly return the dataset object that is most similar to the query. The ..."
Abstract

Cited by 457 (7 self)
 Add to MetaCart
In this article, we give an overview of efficient algorithms for the approximate and exact nearest neighbor problem. The goal is to preprocess a dataset of objects (e.g., images) so that later, given a new query object, one can quickly return the dataset object that is most similar to the query
Continuous Nearest Neighbor Search
, 2002
"... A continuous nearest neighbor query retrieves the nearest neighbor (NN) of every point on a line segment (e.g., "find all my nearest gas stations during my route from point s to point e"). The result contains a set of <point, interval> tuples, such that point is the NN of all po ..."
Abstract

Cited by 160 (10 self)
 Add to MetaCart
points in the corresponding interval. Existing methods for continuous nearest neighbor search are based on the repetitive application of simple NN algorithms, which incurs significant overhead. In this paper we propose techniques that solve the problem by performing a single query for the whole
Results 1  10
of
4,127