• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 16,206
Next 10 →

Information-theoretic metric learning

by Jason Davis, Brian Kulis, Suvrit Sra, Inderjit Dhillon - in NIPS 2006 Workshop on Learning to Compare Examples , 2007
"... We formulate the metric learning problem as that of minimizing the differential relative entropy between two multivariate Gaussians under constraints on the Mahalanobis distance function. Via a surprising equivalence, we show that this problem can be solved as a low-rank kernel learning problem. Spe ..."
Abstract - Cited by 359 (15 self) - Add to MetaCart
. Specifically, we minimize the Burg divergence of a low-rank kernel to an input kernel, subject to pairwise distance constraints. Our approach has several advantages over existing methods. First, we present a natural information-theoretic formulation for the problem. Second, the algorithm utilizes the methods

Information-Theoretic Co-Clustering

by Inderjit S. Dhillon, Subramanyam Mallela, Dharmendra S. Modha - In KDD , 2003
"... Two-dimensional contingency or co-occurrence tables arise frequently in important applications such as text, web-log and market-basket data analysis. A basic problem in contingency table analysis is co-clustering: simultaneous clustering of the rows and columns. A novel theoretical formulation views ..."
Abstract - Cited by 346 (12 self) - Add to MetaCart
Two-dimensional contingency or co-occurrence tables arise frequently in important applications such as text, web-log and market-basket data analysis. A basic problem in contingency table analysis is co-clustering: simultaneous clustering of the rows and columns. A novel theoretical formulation

DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases

by Roy Goldman, Jennifer Widom , 1997
"... In semistructured databases there is no schema fixed in advance. To provide the benefits of a schema in such environments, we introduce DataGuides: concise and accurate structural summaries of semistructured databases. DataGuides serve as dynamic schemas, generated from the database; they are ..."
Abstract - Cited by 572 (13 self) - Add to MetaCart
; they are useful for browsing database structure, formulating queries, storing information such as statistics and sample values, and enabling query optimization. This paper presents the theoretical foundations of DataGuides along with an algorithm for their creation and an overview of incremental maintenance

Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations

by Stanley Osher, James A. Sethian , 1988
"... We devise new numerical algorithms, called PSC algorithms, for following fronts propagating with curvature-dependent speed. The speed may be an arbitrary function of curvature, and the front also can be passively advected by an underlying flow. These algorithms approximate the equations of motion, w ..."
Abstract - Cited by 1183 (60 self) - Add to MetaCart
in the moving fronts. The algorithms handle topological merging and breaking naturally, work in any number of space dimensions, and do not require that the moving surface be written as a function. The methods can be also used for more general Hamilton-Jacobi-type problems. We demonstrate our algorithms

The "Independent Components" of Natural Scenes are Edge Filters

by Anthony J. Bell, Terrence J. Sejnowski , 1997
"... It has previously been suggested that neurons with line and edge selectivities found in primary visual cortex of cats and monkeys form a sparse, distributed representation of natural scenes, and it has been reasoned that such responses should emerge from an unsupervised learning algorithm that attem ..."
Abstract - Cited by 617 (29 self) - Add to MetaCart
resemble the receptive fields of simple cells in visual cortex, which suggests that these neurons form a natural, information-theoretic

Learning to detect natural image boundaries using local brightness, color, and texture cues

by David R. Martin, Charless C. Fowlkes, Jitendra Malik - PAMI , 2004
"... The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements. We formulate features that respond to characteristic changes in brightness, color, and texture associated with natural boundaries. In order to combine the information from these fe ..."
Abstract - Cited by 625 (18 self) - Add to MetaCart
The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements. We formulate features that respond to characteristic changes in brightness, color, and texture associated with natural boundaries. In order to combine the information from

Toward a model of text comprehension and production

by Walter Kintsch, Teun A. Van Dijk - Psychological Review , 1978
"... The semantic structure of texts can be described both at the local microlevel and at a more global macrolevel. A model for text comprehension based on this notion accounts for the formation of a coherent semantic text base in terms of a cyclical process constrained by limitations of working memory. ..."
Abstract - Cited by 557 (12 self) - Add to MetaCart
. Furthermore, the model includes macro-operators, whose purpose is to reduce the information in a text base to its gist, that is, the theoretical macrostructure. These opera-tions are under the control of a schema, which is a theoretical formulation of the comprehender's goals. The macroprocesses

Building a Large Annotated Corpus of English: The Penn Treebank

by Mitchell P. Marcus, Beatrice Santorini, Mary Ann Marcinkiewicz - COMPUTATIONAL LINGUISTICS , 1993
"... There is a growing consensus that significant, rapid progress can be made in both text understanding and spoken language understanding by investigating those phenomena that occur most centrally in naturally occurring unconstrained materials and by attempting to automatically extract information abou ..."
Abstract - Cited by 2740 (10 self) - Add to MetaCart
There is a growing consensus that significant, rapid progress can be made in both text understanding and spoken language understanding by investigating those phenomena that occur most centrally in naturally occurring unconstrained materials and by attempting to automatically extract information

Exploiting Generative Models in Discriminative Classifiers

by Tommi Jaakkola, David Haussler - In Advances in Neural Information Processing Systems 11 , 1998
"... Generative probability models such as hidden Markov models provide a principled way of treating missing information and dealing with variable length sequences. On the other hand, discriminative methods such as support vector machines enable us to construct flexible decision boundaries and often resu ..."
Abstract - Cited by 551 (9 self) - Add to MetaCart
Generative probability models such as hidden Markov models provide a principled way of treating missing information and dealing with variable length sequences. On the other hand, discriminative methods such as support vector machines enable us to construct flexible decision boundaries and often

Max-margin Markov networks

by Ben Taskar, Carlos Guestrin, Daphne Koller , 2003
"... In typical classification tasks, we seek a function which assigns a label to a single object. Kernel-based approaches, such as support vector machines (SVMs), which maximize the margin of confidence of the classifier, are the method of choice for many such tasks. Their popularity stems both from the ..."
Abstract - Cited by 604 (15 self) - Add to MetaCart
independently to each object, losing much useful information. Conversely, probabilistic graphical models, such as Markov networks, can represent correlations between labels, by exploiting problem structure, but cannot handle high-dimensional feature spaces, and lack strong theoretical generalization guarantees
Next 10 →
Results 1 - 10 of 16,206
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University