Results 1  10
of
3,771,318
The Nature of Statistical Learning Theory
, 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract

Cited by 12976 (32 self)
 Add to MetaCart
on the developed theory were proposed. This made statistical learning theory not only a tool for the theoretical analysis but also a tool for creating practical algorithms for estimating multidimensional functions. This article presents a very general overview of statistical learning theory including both
Generalized Autoregressive Conditional Heteroskedasticity
 JOURNAL OF ECONOMETRICS
, 1986
"... A natural generalization of the ARCH (Autoregressive Conditional Heteroskedastic) process introduced in Engle (1982) to allow for past conditional variances in the current conditional variance equation is proposed. Stationarity conditions and autocorrelation structure for this new class of parametri ..."
Abstract

Cited by 2288 (31 self)
 Add to MetaCart
A natural generalization of the ARCH (Autoregressive Conditional Heteroskedastic) process introduced in Engle (1982) to allow for past conditional variances in the current conditional variance equation is proposed. Stationarity conditions and autocorrelation structure for this new class
Basic objects in natural categories
 COGNITIVE PSYCHOLOGY
, 1976
"... Categorizations which humans make of the concrete world are not arbitrary but highly determined. In taxonomies of concrete objects, there is one level of abstraction at which the most basic category cuts are made. Basic categories are those which carry the most information, possess the highest categ ..."
Abstract

Cited by 856 (1 self)
 Add to MetaCart
Categorizations which humans make of the concrete world are not arbitrary but highly determined. In taxonomies of concrete objects, there is one level of abstraction at which the most basic category cuts are made. Basic categories are those which carry the most information, possess the highest category cue validity, and are, thus, the most differentiated from one another. The four experiments of Part I define basic objects by demonstrating that in taxonomies of common concrete nouns in English based on class inclusion, basic objects are the most inclusive categories whose members: (a) possess significant numbers of attributes in common, (b) have motor programs which are similar to one another, (c) have similar shapes, and (d) can be identified from averaged shapes of members of the class. The eight experiments of Part II explore implications of the structure of categories. Basic objects are shown to be the most inclusive categories for which a concrete image of the category as a whole can be formed, to be the first categorizations made during perception of the environment, to be the earliest categories sorted and earliest named by children, and to be the categories
A survey of generalpurpose computation on graphics hardware
, 2007
"... The rapid increase in the performance of graphics hardware, coupled with recent improvements in its programmability, have made graphics hardware acompelling platform for computationally demanding tasks in awide variety of application domains. In this report, we describe, summarize, and analyze the l ..."
Abstract

Cited by 545 (18 self)
 Add to MetaCart
the latest research in mapping generalpurpose computation to graphics hardware. We begin with the technical motivations that underlie generalpurpose computation on graphics processors (GPGPU) and describe the hardware and software developments that have led to the recent interest in this field. We then aim
The lexical nature of syntactic ambiguity resolution
 Psychological Review
, 1994
"... Ambiguity resolution is a central problem in language comprehension. Lexical and syntactic ambiguities are standardly assumed to involve different types of knowledge representations and be resolved by different mechanisms. An alternative account is provided in which both types of ambiguity derive fr ..."
Abstract

Cited by 556 (23 self)
 Add to MetaCart
Ambiguity resolution is a central problem in language comprehension. Lexical and syntactic ambiguities are standardly assumed to involve different types of knowledge representations and be resolved by different mechanisms. An alternative account is provided in which both types of ambiguity derive from aspects of lexical representation and are resolved by the same processing mechanisms. Reinterpreting syntactic ambiguity resolution as a form of lexical ambiguity resolution obviates the need for special parsing principles to account for syntactic interpretation preferences, reconciles a number of apparently conflicting results concerning the roles of lexical and contextual information in sentence processing, explains differences among ambiguities in terms of ease of resolution, and provides a more unified account of language comprehension than was previously available. One of the principal goals for a theory of language compre third section we consider processing issues: how information is hension is to explain how the reader or listener copes with a processed within the mental lexicon and how contextual inforpervasive ambiguity problem. Languages are structured at mation can influence processing. The central processing mechmultiple levels simultaneously, including lexical, phonological, anism we invoke is the constraint satisfaction process that has morphological, syntactic, and text or discourse levels. At any been realized in interactiveactivation models (e.g., Elman &
Primitives for the manipulation of general subdivisions and the computations of Voronoi diagrams
 ACM Tmns. Graph
, 1985
"... The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the given sites and then locating the query point in one of its regions. Two algorithms ar ..."
Abstract

Cited by 543 (11 self)
 Add to MetaCart
to the separation of the geometrical and topological aspects of the problem and to the use of two simple but powerful primitives, a geometric predicate and an operator for manipulating the topology of the diagram. The topology is represented by a new data structure for generalized diagrams, that is, embeddings
Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization
, 1993
"... The paper describes a rankbased fitness assignment method for Multiple Objective Genetic Algorithms (MOGAs). Conventional niche formation methods are extended to this class of multimodal problems and theory for setting the niche size is presented. The fitness assignment method is then modified to a ..."
Abstract

Cited by 610 (15 self)
 Add to MetaCart
The paper describes a rankbased fitness assignment method for Multiple Objective Genetic Algorithms (MOGAs). Conventional niche formation methods are extended to this class of multimodal problems and theory for setting the niche size is presented. The fitness assignment method is then modified to allow direct intervention of an external decision maker (DM). Finally, the MOGA is generalised further: the genetic algorithm is seen as the optimizing element of a multiobjective optimization loop, which also comprises the DM. It is the interaction between the two that leads to the determination of a satisfactory solution to the problem. Illustrative results of how the DM can interact with the genetic algorithm are presented. They also show the ability of the MOGA to uniformly sample regions of the tradeoff surface.
A Maximum Entropy approach to Natural Language Processing
 COMPUTATIONAL LINGUISTICS
, 1996
"... The concept of maximum entropy can be traced back along multiple threads to Biblical times. Only recently, however, have computers become powerful enough to permit the widescale application of this concept to real world problems in statistical estimation and pattern recognition. In this paper we des ..."
Abstract

Cited by 1341 (5 self)
 Add to MetaCart
describe a method for statistical modeling based on maximum entropy. We present a maximumlikelihood approach for automatically constructing maximum entropy models and describe how to implement this approach efficiently, using as examples several problems in natural language processing.
Results 1  10
of
3,771,318